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Abstract

The Age-of-Information (AoI) metric has emerged as a performance measurement metric for evaluating time-sensitive wireless
communications systems. Maintaining the freshness and reliability of data is critical in time-critical wireless networks, where
outdated information can have significant consequences. Moreover, short packet transmissions are used in wireless sensor networks
(WSNs) to maintain energy efficiency and low latency. This paper proposes a theoretical model that utilizes the AoI metric and
finite block length information theory to estimate information freshness in an unmanned aerial vehicle (UAV)-assisted WSN. This
network includes multiple sensing nodes and relies on short-packet communication for transmission. In this paper, closed-form
expressions for average AoI (AAoI) and the block error rate are derived. Furthermore, the optimal altitude and block length that
ensures the freshness of received information at the destination is determined. The results of the analysis provide valuable insights
into the performance characteristics of UAV-assisted WSNs and have important implications for the design and optimization of
such systems.

Keywords: Unmanned Aerial Vehicles (UAV), Age of Information (AoI), Wireless sensor networks, Finite block-length analysis,
Short-packet communication.

1. Introduction

The rapid growth of the Internet-of-Things (IoT), Cyber-
Physical Systems, and Unmanned Aerial Vehicle (UAV)-
assisted communication networks has unlocked unprecedented
opportunities to bolster efficiency across countless domains of
our daily lives. Among these, UAV-assisted wireless sensor net-
works (WSNs) have garnered substantial interest and attention
for their potential applications spanning agriculture, disaster re-
lief operations, military endeavours, and beyond [1, 2, 3]. The
decisive advantage of employing a UAV-based station in wire-
less sensor networks lies in its ability to establish reliable line-
of-sight (LoS) communication links with ground nodes, thereby
mitigating the adverse effects of obstacles and non-line-of-sight
(NLoS) conditions that plague traditional terrestrial base sta-
tions. By acting as an aerial relay, the UAV can effectively
bypass physical obstructions and maintain strong communica-
tion links, ensuring timely and reliable data collection from the
distributed sensor nodes. This is particularly crucial in urban
environments, disaster zones, or terrains where terrestrial in-
frastructure may be compromised or inaccessible. Moreover,
the mobility and flexibility of UAVs enable dynamic adapta-
tion to changing network conditions, allowing for optimal posi-
tioning to minimise communication delays [4]. In time-critical
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WSN applications where prompt and accurate information is
of the essence, maintaining the freshness and reliability of data
acquires paramount importance, as outdated or stale informa-
tion can precipitate severe and far-reaching consequences. Tra-
ditional performance metrics like latency and delay, however,
prove inadequate in providing a comprehensive understanding
of the timeliness of data, thereby failing to fully capture its
freshness.

To overcome this shortcoming, the Age-of-Information (AoI)
concept has emerged as a novel and innovative metric to quan-
tify the freshness of information. AoI is defined as the time
elapsed since the generation of the last successfully received
update at the destination, capturing the timeliness and rele-
vance of the data. By focusing on the age of the latest update,
AoI provides a comprehensive understanding of the informa-
tion freshness, taking into account both the generation and the
successful delivery of updates. [5, 6, 7]. The AoI metric fur-
nishes valuable insights into the effectiveness of time-sensitive
systems such as UAV-assisted WSNs, thereby serving as a po-
tent tool for evaluating their performance in time-critical ap-
plications [8, 9, 10]. While existing works have analysed AoI
for single-source or grant-based protocols in URLLC-enabled
UAV networks [4, 11, 12], they have largely overlooked the
challenges posed by multi-source scenarios that are prevalent
in practical WSN deployments. Notably, in real-world WSN
environments, multiple sensing nodes often coexist and trans-
mit data simultaneously, leading to potential collisions, interfer-
ence, and degradation of information freshness. Failing to ac-
count for these multi-source dynamics can result in inaccurate



estimates of system performance and suboptimal resource allo-
cation, ultimately compromising the effectiveness of the WSN
in time-critical applications [13].

The paper addresses the pivotal problem of analysing the
Average Age of Information (AAoI) for UAV-assisted WSNs
with multiple sensing nodes. A novel theoretical framework
is developed that synergistically combines the AoI metric with
finite block-length information theory to estimate information
freshness in such multi-source UAV-WSN settings under short-
packet transmissions. The key motivations are two-fold: 1)
to bridge the gap in existing literature by extending AoI anal-
ysis to realistic multi-source UAV-WSN scenarios, and 2) to
leverage finite block-length information theory principles in
multi-source UAV-WSN scenarios, which are better suited for
analysing short-packet communications compared to traditional
information-theoretic approaches that assume infinitely long
block lengths. By adopting a finite block-length analysis,
the work accounts for the practical constraints of short-packet
transmissions that are commonly employed in WSNs to con-
serve energy and maintain low latency.

The main contributions of this work are as follows:

• Developed a theoretical model that synergistically com-
bines the Age of Information (AoI) metric and finite block-
length information theory to estimate information fresh-
ness in a UAV-assisted WSN comprising multiple sensing
nodes and employing short-packet communication.

• Derived closed-form expressions for the average AoI
(AAoI) and block error rate in the considered multi-source
UAV-assisted WSN.

• Determined the optimal UAV altitude, block length, and
sensor activation probability that minimises the AAoI and
ensures the freshness of received information at the desti-
nation node.

• Formulated a lemma that specifies the optimal sensor ac-
tivation probability required to maintain an optimal AoI at
the destination, and validated its efficacy and correctness
through comprehensive simulations.

• Demonstrated through simulations that the proposed UAV-
assisted WSN significantly outperforms traditional fixed
base transceiver station (BTS)-based systems in maintain-
ing information freshness, particularly in urban scenarios
where the performance gap is substantial.

By addressing the crucial problem of multi-source AoI anal-
ysis for UAV-WSNs, this paper provides valuable insights into
the design and optimisation of such systems, paving the way
for more reliable and efficient time-critical WSN applications
leveraging UAVs. Notably, our work holds significant promise
for a wide array of real-world applications, ranging from smart
city monitoring and management to disaster response and re-
lief efforts, where ensuring the timely availability of up-to-date
information is of paramount importance for informed decision-
making and effective resource allocation. In smart city sce-
narios, for instance, UAV-assisted WSNs can enable efficient
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Figure 1. System model of UAV-assisted WSN: A UAV at altitude H serving
as a decode-and-forward relay between sensor nodes S k and the destination
node D.

monitoring of traffic patterns, air quality, noise levels, and en-
ergy consumption, thereby facilitating data-driven urban plan-
ning and resource management. Similarly, in the aftermath of
natural disasters or emergencies, our proposed framework can
help emergency responders collect accurate and timely infor-
mation, enabling them to make informed decisions and allocate
resources optimally, ultimately saving lives and minimising the
devastating impacts of such events.

By providing a comprehensive theoretical analysis of infor-
mation freshness in multi-source UAV-WSNs, our work not
only advances the state-of-the-art in this domain but also serves
as a foundation for future research endeavours aimed at further
enhancing the performance and reliability of these systems. Ul-
timately, our contributions underscore the critical importance
of accounting for multi-source dynamics and leveraging inno-
vative information-theoretic approaches in the design and op-
timisation of UAV-assisted WSNs, paving the way for a future
where these systems can realise their full potential in enabling a
wide range of time-critical applications that demand timely and
accurate information.

The remaining sections of this paper are organized as fol-
lows: Section 2 presents the system model and evaluates the
block error rate and the AAoI of the network. Section 3 presents
numerical simulation results and evaluates the performance of
the system. Finally, Section 4 summarizes the conclusions
drawn in the paper.

2. System Model

As shown in Fig. 1, we consider a UAV-assisted WSN,
where the UAV (U) is placed at an altitude of H and it acts
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as a wireless decode-and-forward (DF) relay between the sen-
sor nodes (S k∀ k ∈ {1, ...,K}) and the destination (D) node.
Suppose that each ground node S k has a fixed location Lk =

(Xk; Yk; 0) and the location of the UAV and Destination are
denoted as LU = (XU ; YU ; H) and LD = (XD; YD; 0) respec-
tively. The horizontal distance between each node i and j is

li, j =
√(

Xi − X j

)2
+

(
Yi − Y j

)2
where i ∈ (S k,U) , j ∈ (U,D).

The S k is said to be in the coverage of the UAV if their horizon-
tal distance lk,U is less than or equal to r. The elevation angle of
UAV is θk and if it is measured from the S k, θk = tan−1( H

lk,U
) and

if it is measured from the D, θD = tan−1( H
lU,D

). In this wireless
communication system, the transmission time is divided into
equal intervals known as time blocks. Each time block is fur-
ther divided into two slots and each slot is used to transmit a
single packet. Each sensor node in the network becomes active
independently with a probability of Pa, j at the beginning of each
block and the probability follows a binomial distribution with
parameters (K; Pa, j). The system does not consider any feed-
back or re-transmission policies, which means that each update
is delivered only once. In the first slot, sensor nodes send data
to the UAV relay, and all sensor nodes share the same wireless
resources. In the second slot, the UAV decodes and transmits
the data to the destination. There is no direct communication
between the sensor nodes and the destination.

The system considers both line-of-sight (LoS) and non-line-
of-sight (NLoS) links between the UAV and the ground stations
(sensor nodes or destination). The probability of LoS between
the UAV and ground station l ∈ (S k,D) can be expressed as
follows [14, 11]:

PLoS(θl) =
1

1 + ρ exp(−φ(θl − ρ))
, (1)

where ρ and φ are S-curve parameters that are completely de-
pendent on the environment. The large-scale channel gain α for
the channel between transmitting node i ∈ (S k,U) and receiv-
ing node j ∈ (U,D) is determined as follows [11]:

(2)
−10 log(αi j) = 20 log(di, j) + 20 log(

4π fci, j

c
) + ηNLOS

+
ηLOS − ηNLOS

1 + ρ exp(−φ(θl − ρ)
,

where fci, j and c are the carrier frequency (Hz) and the speed
of the light (m/s), respectively. ηNLOS and ηNLOS are the ex-
pectations of the additional environment-dependent excessive
path loss for the LoS and NLoS components, respectively. As-
suming that the three nodes remain static during transmission
and ignore the Doppler effect, we employ the Rician fading
model to investigate the small-scale channel characteristics and
multi-path propagation in this system 1. The probability distri-
bution of small-scale channel gain (gi j) follows a non-central
chi-square distribution, and the probability density function 2

1The small-scale channel gain is denoted as gi j = |H2
i j |, where Hi j represents

the Rician fading channel coefficient.
2FX(x) and fX(x) represents the cumulative distribution function (CDF) and

probability density function (PDF) of an arbitrary random variable X, respec-
tively.

for the small-scale channel gain can be expressed as:

fgi j (z) =
(KL + 1) e−KL

ḡi j
e
−(KL+1)z

ḡi j I0

2
√

KL (KL + 1) z
ḡi j

 , (3)

where z ≥ 0, ḡi j = 1, I0 (· ) is the zero-order modified Bessel
function of the first kind, and KL is the Rician factor, which can
be expressed as follows [15, 11]:

KL =
PLoS (θl)

1 − PLoS (θl)
=

1
ρ exp(−φ(θl − ρ))

. (4)

Then, the instantaneous signal-to-noise ratio (SNR) at each re-
ceiving node can be calculated as follows:

γ j =
αi jgi jPi

σ2 , (5)

where αi j is the large-scale channel gain, gi j is the small-scale
channel gain, Pi is the transmission power at node i and σ2 is
the noise power at the receiver. In addition, the expectation of
SNR at the node j can be calculated as the function of li, j as
follows:

γ̄ j

(
li, j

)
=

De

A

1+ρ exp(−φ(tan−1
(

H
li, j

)
−ρ))(

l2i, j + H2
) , (6)

where A = −(ηLOS−ηNLOS ) ln(10)
10 and D = Pi10−

G
10

σ2 , where G =

20 log
(

4π fci, j

c

)
+ ηNLOS. Furthermore, the conditional PDF of

SNR at the UAV is given by:

fγk,U (z | lk,U) =
(KL + 1) e−KL

γ̄k,U
e
−(KL+1)z
γ̄k,U I0

2
√

KL (KL + 1) z
γ̄k,U

 .
(7)

Thus, Fγk,U

(
z, | lk,U

)
can be derived as in [16]:

Fγk,U

(
z, | lk,U

)
= 1 − Q1

√2KL,

√
2 (KL + 1) z

γ̄k,U

 , (8)

where Q1 (·, ·) is first order Marcum Q-function. However, due
to the intricate complexity of the Marcum Q-function, an ap-
proximation is utilized as in [17] at the high SNRs in order to
derive a closed-form equation for Fγk,U (z | lk,U) as follows:

Fγk,U

(
z, | lk,U

)
≈

e−KL (1 + KL) z
γ̄k,U

. (9)

Furthermore, Fγk,U (z) can be formulated as follows:

Fγk,U (z) =
∫ ∞

0
Fγk,U

(
z | lk,U

)
flk,U

(
lk,U

)
dlk,U , (10)

where flk,U
(
lk,U

)
can be calculated as follows, since it is as-

sumed that sensor nodes are uniformly distributed :

flk,U
(
lk,U

)
=

{ 2lk,U
r2 , lk,U ≤ r,
0, otherwise.

(11)

3



Moreover, (10) can be reformulated as follows using (6), (9),
(10) and (11) :

Fγk,U (z) =
2

Dr2

∫ r

0

e−
Wl

1−Wl z
(
l2k,U + H2

)
lk,U

(1 −Wl) eAWl︸                       ︷︷                       ︸
ql(lk,U ,z)

dlk,U , (12)

where Wl =
1

1+ρ exp(−φ(tan−1
(

H
lk,U

)
−ρ))

. Then, since the Gaussian-

Chebyshev Quadrature method converges much faster than
other approximation methods, it has been employed for the inte-
gration of ql(lk,U , z) to obtain a closed-form expression for (13)
as follows [18]:

Fγk,U (z) =
2

Dr

M∑
m=1

M
π

√
1 − ϕ2

mql(αl, z) + Rm, (13)

where ϕm = cos
(

2m−1π
M

)
, αl =

r
2ϕm +

r
2 , M is the complexity-

accuracy trade-off factor. RM is the error term, and at high M
values, RM becomes negligible and has little impact on the over-
all system performance. Furthermore, the CDF of γU,D can be
expressed as in [16] :

FγU,D (z) = 1 − Q1

√2K,

√
2 (K + 1) z

γ̄U,D

 , (14)

where Q1 (·, ·) is the first-order Marcum Q-function, a function
that is challenging to manipulate directly [19]. Thus, a semi-
linear approximation is employed to derive a closed-form ex-
pression for FγU,D (z) as in [19, 11]:

FγU,D (z) ≃ Ψ

√2K,

√
2 (K + 1) z

γ̄U,D

 ,
≃ Ψ (ω1, ω2) ,

(15)

where Ψ (ω1, ω2) is the semi-linear approximation of the 1 −
Q1 (ω1, ω2) and it can be calculate as in [19].

2.1. Block Error Probability
In order to analyze block error probability using finite block

length information theory, it is assumed that fading coefficients
remain constant throughout each transmission block. In addi-
tion, it is assumed that the receiver possesses accurate channel
state information. Consequently, the expectation of decoding
error probability at each receiving node is expressed as follows
[20]:

ε j = E


Q


ni, j

(
log2(1 + γ j)

)
− kb√

ni, j

(
log2

2e
2

(1 −
1

(1 + γ j)2 )
)



, (16)

where E [.] denotes the expectation operator and Q(x) =
1√
2π

∫ ∞
x e−

t2
2 dt. It is assumed that kb information bits are con-

tained in a ni, j bit length block. Moreover, under the Rician

fading block fading conditions, ε j can be expressed as

ε j =

∫ ∞

0
fγ j (z)Q


ni, j

(
log2(1 + γ j)

)
− kb√

ni, j

(
log2

2e
2

(1 −
1

(1 + γ j)2 )
)


dz. (17)

Obtaining a closed-form expression for the overall decoding er-
ror probability can be challenging due to the complexity of the
Q-function. To address this matter, an approximation technique
similar to the approach in [21, 11] has been used as follows:

εj ≈ β j
√

ni, j

∫ δ j

ϕ j

Fγj (z)dz ≃ Fγ j

(
ψj

)
. (18)

where β j =
1

2π

√
2

2kb
ni, j − 1

, ψ j = 2
kb

ni, j − 1, ϕ j = ψ j −
1

2β j
√ni, j

and δ j = ψ j +
1

2β j
√ni j

. Then, using (13), (15) and (18) closed

form expression for block error at each node can be derived.
The probability of a node successfully updating the UAV at the
end of the first time slot, denoted by τk,U , occurs when a node
transmits during the slot, no other node transmits, and the UAV
correctly decodes the packet. Then, τk,U can be calculated as
follows:

τk,U = Pa,k
(
1 − εk,U

)∏
k ̸= j

(
1 − Pa, j

)
. (19)

Then, the overall decoding error probability can be expressed
as εovr,k = 1 − τk,U + εU,Dτk,U [21].

2.2. Age of Information Analysis

The AAoI at the D for update each node S k is computed as
follows, using [11]:

∆AAOI
k =

E[X2
k ]

2E[Xk]
+ T, (20)

where Xk denotes the inter-departure time between two consec-
utive successfully received status updates at D. It assumes that
the end-to-end delay of each successfully received update is al-
ways a constant, this is given by T =

(
nk,U + nU,D

)
Ts, where

Ts is the symbol duration. The inter departure time Xk is a geo-
metric random variable with mean E [Xk] = T

1−εovr,k
and second

moment E
[
X2

k

]
= 2T 2

(1−εovr,k)2 −
T 2

1−εovr,k
. Then, (20) can be reformu-

lated as follows:

∆AAOI
k = T

(
1
2
+

1
1 − εovr,k

)
. (21)

Finally, the network AAoI can be calculated as follows [22]:

∆AAOI
net =

T
2
+

T
K

K∑
k=1

1
1 − εovr,k

. (22)

Lemma 1. The optimal value for the active probability of sen-
sors that minimizes ∆AAOI

net is P∗a,k ≈
1
K .
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Proof: It is assumed that in networks comprising numerous
nodes, node k is likely to have a small optimal active probability
P∗a,k. Then, using inequality 1−y ≤ e−y and 1−y ≈ e−y for small
y, (19) can be reformulated as follows:

τk,U ≤
Pa,k

(
1 − εk,U

)(
1 − Pa,k

) e−
∑K

j=1 Pa, j . (23)

Then, ∆̂AAOI
net the lower bound of ∆AAOI

net can be calculated as

∆AAOI
net ≥ ∆̂AAOI

net =
T
2
+

Te
∑K

j=1 Pa, j

K

K∑
k=1

1
Φk

(
1

Pa,k
− 1

)
, (24)

where Φk =
(
1 − εk,U

) (
1 − εU(k),D

)
. Then, defining the quanti-

ties as

A =
K∑

k=1

1
Φk

(
1

Pa,k
− 1

)
and A′ =

K∑
k=1

1
ΦkPa,k

, (25)

the first-order optimality conditions for ∆̂AAOI
net can be calculated

as Pa,k =
1√

AΦk
. As in (25), A < A′ and as a result, P∗a,k can be

derived as follows:

Pa,k ≥
1

A′ΦkPa,k
=

√
AΦk

A′Φk
=

1/
√
Φk∑K

j=1

(
1/

√
Φk

) ≈ 1
K
≈ P∗a,k.

(26)

3. SIMULATION RESULTS

In this section, numerical results are presented to validate the
theoretical derivations. Unless otherwise specified, the simula-
tion parameters are set as r = 400 m, dU,D = 1000 m, H = 500 m,
fcS k ,U

= 900 MHz, fcU,D = 2.4 GHz, c = 3 × 108ms−1, ηLOS (Sub-
urban) = 0.1 dB, ηNLOS (Suburban) = 21 dB, ηLOS (Urban) =
1 dB, ηNLOS (Urban) = 20 dB, ηLOS (Dense urban) = 1.6 dB,
ηNLOS (Dense Urban) = 23 dB, ηLOS (High-rise urban) = 2.3
dB, ηNLOS (High-rise Urban) = 34 dB, PS k = 90 mW, PU = 0.2
W, Ts =17 µs, nk,U = 54 bits, nU,D = 54 bits, kb = 32 bits, Pa =

0.2, K = 5 nodes and σ2 = -100 dBm [15].
In Fig. 2, the network AAoI is plotted against the altitude

of the UAV using (22). The results indicate that the optimal
altitude is 600 m in all environmental conditions. At lower al-
titudes, the network AAoI is higher due to the high error prob-
ability caused by the weak LoS. As altitude increases towards
the optimal value, the AAoI decreases rapidly due to a stronger
LoS that outweighs the impact of path loss. However, beyond
the optimal altitude, the path loss dominates other factors, lead-
ing to a higher network AAoI. When the altitude is between
250 m - 700 m, the network AAoI is at its minimum for all envi-
ronments except for high-rise urban. The network AAoI cannot
be reduced to its minimum due to a low SNR caused by weak
LoS conditions in high-rise urban areas. The suburban environ-
ment has the lowest AAoI for all altitudes due to strong channel
conditions.

Fig. 3 shows the impact of block length on network AAoI
in this system. Longer block lengths increase system delay as

100 200 300 400 500 600 700 800 900

10
-2

10
-1

Figure 2. Network AAoI as a function of UAV altitude for different
environments.

transmission time directly correlates with block length. Con-
versely, shorter block lengths result in more decoding errors.
For smaller block lengths, decoding error probability signif-
icantly affects AAoI compared to transmission time. How-
ever, when the block length increases towards its optimal value,
AAoI decreases due to fewer decoding errors. Beyond optimal
value, the increase in transmission time outweighs the reduc-
tion in transmission errors, resulting in a higher AAoI. There-
fore, when selecting the block length in a wireless communi-
cation system, it is important to balance the trade-offs between
transmission time and decoding error to ensure optimal AAoI
performance of the system.

100 150 200 250 300 350 400 450 500

10
-1

10
0

Figure 3. Network AAoI as a function of Blocklength for different
environments.

Fig. 4 illustrates the relationship between the network AAoI
and the active probability (Pa) for different numbers of nodes.
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As illustrated in the figure, a small active probability results in
a higher network AAoI due to the scarcity of frequent status
updates at the destination. As the active probability increases
towards its optimal point, the AAoI decreases due to more fre-
quent updates at the destination. However, beyond the optimal
value, increasing the active probability increases the network
AAoI due to a higher number of transmission collisions. No-
tably, Fig. 4 highlights that the system achieves the minimum
network AAoI when Pa ≈ 1/K, as stated in Lemma 1.
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Figure 4. Network AAoI as a function of Active Probability (Pa) for different
numbers of nodes (K) in a wireless network.

Fig. 5 illustrates the relationship between network AAoI and
total transmission power for the UAV-assisted WSN and tradi-
tional fixed BTS-based system under different environmental
conditions. As shown, transmission power significantly im-
pacts AAoI, with AAoI decreasing as transmission power in-
creases in both scenarios. However, in the UAV-assisted WSN
model, AAoI remains nearly constant beyond 0.1W due to the
low transmission error rate at the receiver. The UAV-assisted
WSN significantly improves information freshness compared to
the traditional fixed terrestrial-based BTS-assisted WSN, with a
larger performance gap in urban scenarios. The proposed UAV-
assisted WSN model better maintains information freshness in
WSNs under various environmental conditions, particularly in
dense urban areas where traditional fixed BTS-based systems
fail due to poor LoS conditions. This makes the model suit-
able for real-world urban applications, such as smart city sce-
narios and disaster management. In smart cities, UAV-assisted
WSNs enable efficient monitoring of traffic, air quality, noise
levels, and energy consumption. In disaster management, the
model ensures accurate and up-to-date information collection,
enabling informed decision-making and effective resource allo-
cation by emergency responders, ultimately saving lives in the
aftermath of natural disasters or emergencies.
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Figure 5. Network AAoI vs. total transmission power for UAV − assisted and
fixed BTS− based WSNs under different environments.

4. Conclusion

This paper presents a study on the freshness of data in a UAV-
assisted WSN with multiple sensors, using AoI as a metric.
Closed-form expressions for the network AAoI and block error
probability, which depend on the UAV altitude, block length,
and activation probability of sensors, have been derived. Our
numerical analysis reveals the existence of an optimal block
length, UAV altitude, and activation probability that minimizes
the network AAoI, thus ensuring the freshness of the sensor net-
work. Both theoretical analysis and simulation results demon-
strates that the optimal activation probability that minimizes the
network AAoI. This approximately equals the reciprocal of the
number of nodes in the network. Furthermore, the simulation
results clearly show that the proposed UAV-assisted WSN sys-
tem significantly outperforms the traditional fixed-BTS based
system in terms of maintaining the freshness of information.
The proposed system model navigates the system designers in
allocating communication resources for UAV-assisted WSNs
and designing more reliable and efficient WSN systems in prac-
tical applications. While this study focuses specifically on
UAV-assisted WSNs, integrating edge servers with WSN sys-
tems also could further enhance the freshness of the informa-
tion. Future research should explore how this type of system
enhances the freshness of the information and conduct a com-
parative analysis between the UAV-based solution and the edge
server-based solution to provide valuable insights into the opti-
mal design of WSN systems.
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