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Pau Climent-Pérez1, Alejandro Galán-Cuenca1, Nahuel E. Garcı́a-d’Urso1,4

Marcelo Saval-Calvo1, Jorge Azorin-Lopez1, and Andres Fuster-Guillo1
5

1Department of Computer Technology, University of Alicante, 03690, SPAIN6

Corresponding author:7

Pau Climent-Pérez1
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ABSTRACT10

Overexploitation of fisheries is a worldwide problem, which is leading to a large loss of diversity, and
affects human communities indirectly through the loss of traditional jobs, cultural heritage, etc. To address
this issue, governments have started accumulating data on fishing activities, to determine biomass
extraction rates, and fisheries status. However, these data are often estimated from small samplings,
which can lead to partially inaccurate assessments. Fishing can also benefit of the digitization process
that many industries are undergoing. Wholesale fish markets, where vessels disembark, can be the
point of contact to retrieve valuable information on biomass extraction rates, and can do so automatically.
Fine-grained knowledge about the fish species, quantities, sizes, etc. that are caught can be therefore
very valuable to all stakeholders, and particularly decision-makers regarding fisheries conservation,
sustainable, and long-term exploitation. In this regard, this paper presents a full workflow for fish instance
segmentation, species classification, and size estimation from uncalibrated images of fish trays at the fish
market, in order to automate information extraction that can be helpful in such scenarios. Our results on
fish instance segmentation and species classification show an overall mean average precision (mAP)
at 50% intersection-over-union (IoU) of 70.42%, while fish size estimation shows a mean average error
(MAE) of only 1.27 cm.
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1 INTRODUCTION26

The overexploitation of fisheries is a problem that affects most seas in the world. Many stakeholders are27

involved in the fishing industry, each with different interests that need to be preserved: from long-term,28

sustainable exploitation; to the preservation of marine ecosystems for generations to come. However,29

management of fisheries is a complex task as reviewed by Gladju et al. (2022), which currently involves30

interpolation of statistical data obtained from a small percentage of samples, given the impossibility to31

sample and process the large amount of incoming catches per day. Knowledge about these catches is32

necessary for a better assessment of the health of fisheries. Fine-grained and frequent sampling of such33

data is important, according to Palmer et al. (2022).34

This paper is framed by the multi-disciplinary project DeepFish-Project (2023) about fisheries pro-35

cesses automation, focused on providing a system to control the different stages in the fish market. In36

fisheries, the control of how many species, instances of each specimen, and size of them are critical37

aspects for legal and business control. Capturing small fishes as well as fishing certain species in restricted38

periods of the year might break the law. Counting and sizing the specimens can help control the actual39

catching of the day. Furthermore, estimation of the biomass is derived from the fish size, so it can also40

be automated after fish size is obtained. As part of this project, in particular, this paper aims to segment,41

classify, and regress fish sizes in wholesale fish markets using machine learning and computer vision42

techniques.43

The Food and Agriculture Organization (FAO) of the United Nations (UN), estimates that small-scale44

fishing boats represent 80% of the fleet in the Mediterranean FAO (2020). In their Plan for Action for45



Small-scale Fisheries (RPOA-SSF) they call for improving the knowledge retrieval on catches, as well46

as on fisheries status and health. Because of the size of such fisheries, and the direct involvement of all47

stakeholders, d’Armengol et al. (2018) emphasize the importance of shared management strategies, as48

these increase acceptance by fishers.49

Traditionally, small-scale wholesale fish markets often receive the fish caught by these small-scale50

fishing boats. In these settings, it is not common to have automated, digitized systems for catch counting,51

fish sizing, etc. The quality of this information is, hence, conditioned by a series of cascading, accumulated52

errors that range from the fishing boat, to the staff on the wholesale fish market, auction, government53

inspectors, and so on. Given the large amount of fish disembarked, it is often not possible to sample54

for inspection but a small fraction of all catches of the day. Furthermore, human miscommunication,55

specially when manually communicating data of fish captures, can lead to increased error rates, and lead56

to imprecise models.57

Solutions based on the use of computer vision might aid this situation, by helping reduce errors caused58

by the accumulation of human errors. However, their usage is not extended in traditional industries such59

as fishing. The next section will look at the solutions that have been envisaged so far, and how these60

can help shape a solution that is aimed at the goal of this paper, which is to help in the effort of fisheries61

health assessment by means of capturing as much information as possible from pictures of fish trays in62

small-scale, wholesale fish markets. The focus is brought to the classification of fish species in the batches63

being processed, as well as the estimation of specimen size. This information can be useful to perform64

further analytics on the data by various stakeholders. An example of this would be estimation of biomass65

extraction rates from species and fish size information, to be performed by marine biologists.66

2 PREVIOUS WORK67

The review by Gladju et al. (2022) compiles different types of applications of data mining and machine68

learning in aquaculture and capture fisheries. Applications in aquaculture include monitoring and control69

of the rearing environment, feed optimization and fish stock assessment. As an example, widespread70

applications in aquaculture are fish counting, fish measurement and behaviour analysis Yang et al. (2021);71

Zhao et al. (2021); Li et al. (2020). Similarly, applications in fisheries comprise resource assessment72

and management, fishing and fish catch monitoring and environment monitoring Gladju et al. (2022).73

In recent years, due to the digitization efforts by governments, including public funding aimed at this74

direction for industries, a number of examples of fish market and fishery management systems, and75

digitization projects have appeared. Some of these are focused on management, for instance the studies76

of Bradley et al. (2019); Clavelle et al. (2019). The use of Deep Learning techniques for fish detection and77

measurement is more recent but rapidly increasing. Giordano et al. Giordano et al. (2016) focuses on fish78

behaviour analysis from underwater videos. Marrable et al. (2023) proposes a semi-automated method79

for measuring the length of fish using Deep Learning with near-human accuracy from stereo underwater80

video systems. Álvarez-Ellacurı́a et al. (2020) propose the use of a deep convolutional network (Mask81

R-CNN) for unsupervised length estimation from images of European hake boxes collected at the fish82

market. Vilas et al. (2020) address the problem of fish catch quantification on vessels using computer83

vision, and French et al. (2019) the automated monitoring of fishing discards. However, none of the84

reviewed works above focuses on the analysis of images with varied fish species on auction trays at the85

fish market.86

Since this paper focuses on the problem of automatic fish instance segmentation (IS), including species87

identification, and size estimation, an analysis of such specific, previous works is deemed necessary.88

In computer vision, image classification is a family of methodologies which attempt to determine89

the class of an image (e.g. dog, cat, chair, table, etc.), from a series of pre-defined classes (labels). This90

can be done either using the whole image as input to the method, or using parts or regions of interest91

of the image, that might have been extracted from an object detector. This field has been vastly studied,92

but is still of relevance in current computer vision research efforts. So far, the best results have been93

achieved via deep learning, that is, using neural networks for classification such as the cases of Zhao94

et al. (2017) or Minaee et al. (2021). Image segmentation, on the other hand, is a field of computer vision95

that comprises methods that can label images at the pixel level, thus generating masks with the same96

value for all pixels belonging to a certain class of objects, or textures; and different colours are used to97

label different classes of objects and textures (semantic segmentation). However, when combined with98

object detection (that usually provides a bounding box as an output), and each detected object is given a99
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different identifier, one talks about IS. For instance, in this paper, each fish in the tray is given a different100

identifier, even in the case in which several of the fish shown are of the same species (class). The review of101

Garcia-Garcia et al. (2018); Hafiz and Bhat (2020) provide an in-depth study on this topic. Furthermore,102

image segmentation for fish classification has been studied in several papers. Rauf et al. (2019) use103

a modification of the VGGNet, whereas Zhang et al. (2020) proposed an CNN-based architecture for104

automatic fish counting; finally, Hasija et al. (2017) use Graph-Embedding Discriminant Analysis for105

robust underwater fish species classification, yet it does not provide real-time classification capabilities,106

which limits its application for fast-paced environments. In contrast to that, YOLO (‘you only look once’)107

proposed by Redmon et al. (2016) , is an object detection network known for its simplicity and efficiency108

(with real-time capabilities). It has been used in underwater object detection by Sung et al. (2017) and109

Zhang et al. (2021). The latter presents a model composed by MobileNet v2, YOLO v4 and attention110

features for fish detection. A more recent work by Marrable et al. (2022) use a later version of the network,111

YOLO v5, for fish detection and species recognition. Pedersen et al. (2019) developed a fish dataset and112

use YOLO v2 and v3 as a baseline for evaluation. There exist other alternatives of instance segmentation113

based on deep learning architectures, such as Mask-RCNN He et al. (2017), RetinaMask Fu et al. (2019),114

or FCIS Li et al. (2017).115

In spite of the existence of several methods, the YOLO model has outperformed previous networks116

for object detection in terms of speed, and has raised interest in the object detection community, as proven117

by the many variants that have been published since it first appeared. This fact, combined with the need118

for instance segmentation (i.e. the provision of masks), and not just object detection (i.e. object bounding119

boxes), has led to the creation of YOLACT by Bolya et al. (2019). In their approach, which stands for120

‘You only look at coefficients’ they use a two-stage architecture: first, prototype masks are generated (in121

the Protonet subnet); later, a set of coefficients is predicted per detected instance. Furthermore, a later122

proposal termed YOLACT++, by Bolya et al. (2022), improves the segmentation by means of several123

improvements, namely: adding a fast mask re-scoring branch, which improves the correlation between the124

mask generation and the class confidence; as well as by adding deformable convolutions in the backbone;125

and a faster version for the non-maxima suppression (fast NMS).126

This paper proposes an architecture for segmenting and measuring fish specimens in fish trays, by127

using YOLACT network and a size regressor in a combined manner, as it is explained in detail in Section128

3.129

3 PROPOSAL130

The main contribution of this paper is a system to automatize the processes of fish instance segmentation131

(IS) and size regression. As part of larger research project DeepFish-Project (2023) this contribution is132

embedded in an edge-cloud based system for fish markets. The edge-cloud paradigm brings part of the133

processing to the end nodes, that is, to decentralise the computation.134

Instance classification

Size regression

Instance segmentation

CLOUDNODESensors control

Pre-processing

User Interface

Edge layer Cloud layer

NODE

NODE

Figure 1. Edge-cloud architecture for smart fish market systems.

In particular, this project aims to segment, classify, and regress fish sizes in wholesale fish markets. In135

order to do it, images are obtained from a standard camera (Section 5) and passed to a network architecture136

that performs IS and fish species classification , coupled to a fish size regressor (See Figure 1).137

A YOLACT network is trained for the IS task, and its outputs are used for the regression of fish sizes.138

To train the IS network, human labelling is provided for all uncalibrated images of fish trays shown during139

training. Furthermore, this human labelling provides information regarding tray corners (specifically tray140

handle corners, in this case) in order to make it possible to calculate the ground truth fish sizes using141
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visual metrology to estimate a correspondence (homography) between the points of the corners of the142

tray on the image, and the plane represented by the actual corners of the tray in the real world. Knowing143

the size of the tray in the real world, and via the estimated correspondence, it is possible to estimate the144

sizes of the fish specimens present on the tray, given that the correspondence can be used to transform the145

size of any area in pixels representing a fish on the tray to centimetres. This process of corner-labelling146

and homography estimation for each image, however, is labour-intensive and therefore is only provided147

for training images. The regressor module of the proposed approach is therefore required to learn the148

conversion internally, and to estimate fish sizes from uncalibrated images directly (from a similar angle of149

incidence and distance). This is because smaller-scale fish markets, as noted, might not have the budget or150

required facilities for a fixed camera installation which is typically mounted overlooking an automated151

conveyor belt, and therefore, images may be taken using portable electronic devices with an embedded152

camera (smartphones, work tablets, etc.).153

The information extracted by the proposed system is aimed at fish stock managers, which can gather154

relevant information about the health status of exploited stocks, derive biomass extraction rates, etc. This155

is not only useful to managers but to all stakeholders involved (e.g. fishers, consumers, local governments,156

etc.), since it can help take informed decisions based on accurate evidence, including information on fish157

species caught, the sizes of specimens per species, the total biomass of said specimens (which can be158

derived from their size, or from other visual cues), etc.159

To address the problem of training the IS neural network in the main contribution, a second contribution160

of this paper consists in the gathering and preparation of a large dataset of fish trays from local wholesale161

fish markets. This is the DeepFish dataset. It consists of 1,100 images of fish trays from the small-scale162

wholesale fish market in El Campello, and contains more than 7,600 fish exemplars in total. The images163

were taken from March to October 2021, with a majority of images taken in the first three months.164

Further details about the process and the resulting dataset can be found in Garcı́a-d’Urso et al. (2022).165

Furthermore, the dataset is available online for download from a public repository by Fuster-Guilló et al.166

(2022a).167

The general overview of the proposed methodology is shown in Figure 2, which consists of two main168

workflows. In the top, with a blue background, the workflow for training the IS network (using YOLACT),169

as well as the regressor for fish size estimation, is shown. The bottom part (in yellow) shows the workflow170

for new images once the system has been trained.171

Regressor
training

IS net

IS net

Images (train)

IS network
training

X,wi

wi

image batches

new image

human
labelling masks, boxes

& species

masks, boxes
& corner markers (+) Visual

metrology

+

+

+

+
estimated

homography

yout

bbox0, mask0, species0

bbox1, mask1, species1

bboxn, maskn, speciesn

... ...

, size0

, size1

, sizen

ground truth
fish sizes

new set of X',y (to train size regressor)

regressed
sizes in cmysize

bboxes, masks,
& speciesyNN

trained IS network

Size
regressor

trained regressor

X,y

Tr
ai

ni
ng

 o
f N

N
 a

nd
 r

eg
re

ss
or

In
fe

re
nc

e

Figure 2. Overview of the proposed method for instance segmentation (IS) and size regression. At the
top, in a blue box, the training process. At the bottom, in the yellow box, the inference process for new
images.

4/24



Next, in Section 4, the different components that make up the proposed system are presented. The172

experimental setup and results follow (Sec. 6. To better asses the performance of different variants of173

YOLACT for the IS neural network, a comparison of different backbones (ResNet of different sizes), as well174

as different YOLACT variants (i.e. original vs. YOLACT++) is included. Similarly, results with different175

regressors will be compared, showing the results-driven approach taken to select the best-performing176

regressor for the final system. Then, results for the overall system are presented. Finally, some conclusions177

will be drawn, and work left for the future, outlined (Sec. 7).178

4 METHOD179

The entire proposal is composed by different elements, from one side the edge layer with all the user180

interface parts and the data pre-processing, to the cloud layer performing the heavy computation. Since181

the main computational burden of the proposed system is carried by the cloud side, this section will182

introduce in detail the learning architecture. Later, a description of the specific needs for this project in183

the edge layer are presented in Section 4.3.184

The cloud layer is made up of different components (Figure 2) that work in conjunction to provide185

two outputs at the end: ysize for the estimated fish size, as well as yNN which contains the information of186

bounding box, mask, and species label for each fish segmented from the image by the IS neural network.187

To do this, two main modules are required: the IS network, and the fish size regressor. Each of these will188

be introduced next.189

4.1 Instance segmentation and species classification190

The function of this component in the system (the IS network) is to perform instance segmentation of191

fish specimens present in the trays and to be able to classify said specimens according to their species.192

Instance segmentation, as said, is different from object detection in that the output consists of a mask193

(including a class label, and identifier) per specimen, and not just a bounding box per detected object.194

Furthermore, instance segmentation differs from ‘classical’ segmentation in that it does not provide a195

single label for all areas of the image that pertain to the same class, but it provides separate masks (with196

different identifiers) for detected objects even when these have some overlap in the image (i.e. different197

from semantic segmentation). Several options would exist for this module, as it was mentioned in Section198

2, however, YOLACT is chosen due to its real-time capabilities, and its comparative results in terms of199

mean average precision scores (mAP scores) for the MS COCO dataset as it is presented in the original200

paper by Bolya et al. (2019).201

Because this module is based on a neural network, which falls under the umbrella of data-driven202

methodologies, a step of paramount importance is the collection of relevant data (i.e. data exemplars203

for the problem at hand). Furthermore, preprocessing, and augmentation, will also need to take place.204

Preprocessing in this context refers to adapting the data to the network input format, for instance: resizing205

images to 550×550, normalizing the RGB color data from [0..255] to [0..1], etc. Data augmentation is206

explained later in detail in Section 5.1.1. This data collection is important for systems, like the proposed207

one, in which transfer learning is to be carried out, since the new data ought to modify the weights on208

a small scale as to enrich the network, i.e. improve its recognition capabilities for the new task; but at209

the same time preserving the original weights in the earlier stages (layers or blocks of them), that are210

common to different problems. This happens because, usually, networks come pretrained with datasets211

with millions of images, and the earlier blocks of layers tend to focus on coarser edge and shape features212

of different areas of the image (i.e. like used to be the case in classical computer vision filters, e.g. Gábor).213

As shown later in the Experimentation section, several backbones will be tested, for comparison, i.e.214

to allow for a performance vs. model size evaluation. Regardless of the backbone network used, the ‘P3’215

layer of the feature pyramid network (FPN) is connected to ‘ProtoNet’ which is a fully convolutional216

neural network in charge of prototype mask proposal. Masks generated this way will have the same217

size as the input images (i.e. coordinates match). The viability of the generated masks is assessed in218

parallel, by a prediction head in charge of finding mask coefficient vectors for each ‘anchor’ (that is,219

each layer of the FPN). After masks have been assessed, non-maxima suppression (NMS, or Fast NMS220

for YOLACT++) is used to discard overlapping mask proposals, and therefore obtaining only one mask221

per segmented instance. Following that, ProtoNet mask proposals and NMS results are merged. This222

is done by means of a linear combination, i.e. a matrix multiplication, which is efficient in terms of223

computational time. Finally, some refinements are applied, consisting on cropping and thresholding,224
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Figure 3. Diagram of the adapted YOLACT network for fish instance segmentation and species
classification (IS), used as part of the proposed approach.

which results in the final mask predictions, bounding boxes, and labels. Figure 3 shows an overview of the225

adapted YOLACT architecture presented by Bolya et al. (2019) for the case of fish instance segmentation226

and species classification.227

4.2 Fish size regression228

Estimating the size of exemplars is of great relevance in the field, given that such approaches do not229

currently exist, and would be very relevant for the stakeholders involved. In our case, from a set of image-230

derived features rather than the raw images is a novel and robust approach. In this way, our approach231

decouples the original information from the regressor. Furthermore, this does not only have applications232

in the field of fish markets or fisheries health assessments, but also in other industrial processes such as233

fruit size classification, assembly lines processes, etc. Following the workflow of Figure 2, the output234

of the IS neural network (denoted ‘IS net’) is a yout which consists of the masks, bounding boxes, and235

species labels. These then become a new X ′, that is an input to perform the ‘regressor training’ (box in236

the figure), resulting in a trained regressor, denoted by the orange ‘Size regressor’ module in the inference237

part of the figure. To learn the sizes, a ground truth ygt is required.238

It is also important to highlight that the reliability of the results depend on taking the images roughly239

at the same distance from the trays. In the fisheries scenarios the setups do not change over time, however,240

in a different setup a re-scaling might need to be applied. This ygt is automatically obtained for human-241

labelled images in the training set, by using points from the tray. Since all trays are of a known shape242

(rectangular), same size, and have the handles in the same locations, the rectangle formed by the start of243

these handles is used to obtain the image deformation parameters (in terms of affine transformations).244

Handles, instead of tray corners, are used because of the particularities of the used trays which happen to245

have curved corners, which make it difficult to estimate their exact position when labelled by humans.246

These deformation parameters are then used to obtain a corrected image, as well as a corrected set of247

masks and bounding boxes, from which fish sizes can be derived. This process involves the use of ‘visual248

metrology’ to estimate the homography between the real-life tray rectangle and the rectangle as observed249

in the image. The resulting fish sizes are then used as the required ygt in the process of the ‘regressor250

training’. Once the resulting ‘size regressor’ module is trained, new images can be provided and will251

result in fish sizes being estimated in an unconstrained fashion, without the need of camera calibration, as252

long as images are taken from a similar angle of incidence and distance to the fish trays.253

To validate this approach, several types of regressors have been used, as will be observed in the254

Experimentation section below, specifically in Sec. 5.3. The final result of the proposed system is255

therefore twofold: on the one hand yNN (from Sec. 4.1 above) will contain information about the masks,256

bounding boxes, and species labels of fish specimens; whereas on the other hand ysize will contain the257
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sizes of said specimens.258

4.3 Edge layer computing259

On the other side of the edge-cloud presented architecture in Figure 1, the edge layer unburdens the260

system by processing part of the information in the end node. For the case of a realistic fish market261

scenario, most cases will include a friendly user interface to help non-experts in capturing the data, the262

actual pre-processing and filtering of the data and communication aspects.263

Different sensors may collaborate simultaneously, for instance, a code reader for label or tags264

information acquisition plus a color camera for taking visual images. In our proposal, we use two different265

cameras for the code (QR code) reading and fish tray images. We propose a color camera to be more266

adaptable to different codes. In this case, once the code is read and the metadata is stored, the second267

camera is activated. This is an RGB-D sensor for our particular case, characterized by providing color268

and distance information simultaneously in a single device. In the case of this paper, depth information is269

not used and hence only color camera might be sufficient, but having this information might help in future270

works of this project regarding biomass estimation, by including volumetric information.271

With the information stored, the system needs to send the data to the cloud layer to perform the more272

computationally expensive processing. The communication shall be bidirectional to allow not only data273

transmission but also remote control of the edge node for maintenance or any other purpose. This shall be274

done using encrypted protocols and, in case the user interface wants to be transmitted, other protocols can275

be implemented allowing video sequence remote visualization.276

5 EXPERIMENTATION AND RESULTS277

This section will present different batches of experiments that were carried out to validate the presented278

approach. First, the dataset that was used in the experiments will be introduced. Then, each module, i.e.279

the ‘IS network’ and the ‘Fish size regressor’ will be validated separately, each with a set of experiments280

aimed at demonstrating the behaviour of the different modules. Finally, an overall validation will be281

conducted for the whole proposed system.282

5.1 Dataset283

The current work is part of the DeepFish 2 project DeepFish-Project (2023), which is aimed at the284

improvement of fish biomass extraction calculations for different stakeholders, from different data sources.285

The collaboration with different wholesale fish markets of different scales in the province of Alicante,286

Spain, has been at the core of the project. The images used in this paper correspond to the small-scale287

wholesale fish market of El Campello, and were captured for six months (May to October) during 2021.288

The images were captured with a smartphone camera, that was not fixed to any structure, but were all289

taken from a similar distance and angle of incidence. The images of the market trays include a variety of290

fish species (see Figure 4), with a distribution of fish species as depicted in Figure 5. There are a total of291

59 species, of which 18 are considered target species due to their commercial value; of these, 12 are kept292

for the experiments, since a minimum of 100 specimens per species is considered necessary to train the293

neural network. This number was calculated through experimental validation. These 12 species translate294

into 13 class labels, due to the sexual dimorphism displayed by Symphodus tinca specimens, which are295

therefore considered under two different class labels. The resulting dataset contains 1,185 images of fish296

market trays, containing a total of 7,635 fish specimens. Examples of ground truth labelling can be found297

in Figure 4.298

A modified version of the Django labeller by French et al. (2021) is used by expert marine biologists299

to provide the ground truth for all images in the dataset, including silhouette information, bounding boxes,300

species label, as well as the size, which is provided as a polyline from the mouth to the base of the tail.301

Using polylines in fish size measurement is a common practice in this area, as shown in the review by Hao302

et al. (2016). Other measurements are also provided, such as the width at the waist, or the eye diameter.303

This is useful to derive total fish size for partially occluded exemplars, as explained by the consulted304

experts in marine biology which collaborated in the study. Conversion tables exist in the literature to305

convert between these alternative measurements and fish size estimates. With this labelling tool, an initial306

JSON file is generated, which can then be converted to an ‘MS COCO’-compatible JSON format, via a307

provided script by Fuster-Guilló et al. (2022b). This latter JSON file can then be directly fed to a network308

for training.309
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Further details can be found in Garcı́a-d’Urso et al. (2022). Additionally, the dataset is publicly310

available for download and described by Fuster-Guilló et al. (2022a).311

(a) Masks, boxes, and species (b) Size ground truth polyline

Figure 4. Visualization of ground truth data. For each instance in an image, the human-provided ground
truth contains (a) masks, bounding boxes, and species labels (different colours); as well as (b) fish sizes as
polylines (one per instance, only one shown).

5.1.1 Augmentation312

Since the dataset is highly imbalanced (as made evident from Figure 5, top plot), data augmentation is313

used to train the neural network module. After analysing different tools for data augmentation including314

the proposals of Buslaev et al. (2020) and Jung et al. (2020), and considering that it should be able315

to not just perform augmentation on the data, but also modify the ground truth according to the data316

transformation applied (i.e. generating a modified ground truth JSON file), CLoDSA from Casado-Garcı́a317

et al. (2019) is chosen.318

Data augmentation is carried out here by applying rotations (15◦, 45◦, 90◦, etc.) and translations319

(5 to 50 pixels) on the images of trays. It is worth mentioning here, trays contain specimens of several320

species each, and therefore augmentation needs to be carried out taking into account the species that are321

present in each tray. Yet, a perfect augmentation, in which all species have the exact same number of322

specimens, is not possible. What is possible, however, is to reduce the difference in specimen numbers323

after applying the augmentation. This has carefully and manually been done, by augmenting images with324

the least present species more than those with species for which there is an abundant number of exemplars.325

Before normalization, the differences between the most common and the least common species is 2326

orders of magnitude (1 · 103 vs 7 · 101), whereas after the augmentation, the number of specimens for327

all species have the same order of magnitude (1 ·105 to 2 ·105). The initial number of images of trays328

is 1,260, of which 1,108 are used for training. Only trays used for training are augmented, yielding a329

total of 44,366 images in the training set. The new distribution of species after augmentation is shown330

in Figure 5, bottom plot. Despite the unequal number of instances per species, after augmentation, the331

dataset is more balanced. The reader should note that, because of how the specimens of some species are332

distributed among many trays they appear in a large percentage of the images, and, as a consequence,333

the augmentation of images will increase those specimens by a larger scale than other species that are334

not present in as many trays. For instance, Sphyraena sphyraena is initially the species with the fewest335

instances, but it is distributed in many trays along the dataset. After applying data augmentation at the336

image level, it becomes the most represented species.337

This, however, is not the only augmentation applied to the images. Further on-the-fly augmentations338

are applied during the neural network training process, as part of YOLACT. These consist of: photometric339

distortion (i.e. altering the hue and saturation), expansion and contraction (i.e. simulating detection at340

different scales), random sample cropping, as well as random flipping of the images (mirroring).341

5.2 Proposed IS experiments342

The experiments regarding the IS module are aimed at showing the performance of a set of YOLACT343

variants, and demonstrate their utility for the task at hand. There is a balance between backbone size,344

performance, and inference times (which are well known for these variants by Bolya et al. (2019, 2022)).345
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Figure 5. Distribution of fish species in the DeepFish dataset for the selected species. The top bar plot
presents the original distribution and the bottom bar plot depicts the augmented distribution.
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Four different variants are evaluated, by mixing different ResNet backbone sizes (50, 101 or 152346

layers), and employing either YOLACT or the improved YOLACT++. The four combinations are: Two347

tests using the original backbone size with either YOLACT/++ variants, as per the original specifications.348

And two additional tests: increasing the number of layers to 152 for the ‘weaker’ variant (classical); and349

decreasing the number of layers for the ‘stronger’ (++) variant. The rationale behind this is, that this350

way, the contribution of the backbone size and the variant type can be separated, similar to an ablation351

test. That is, the classical variant is given a larger backbone to check whether the backbone size alone is352

capable of compensating ‘++’ variant improvements. Furthermore, the ‘++’ variant is provided with a353

smaller backbone, to check how much the improvements of that particular variant contribute to the overall354

results.355

In all cases, training parameters stay the same: the input size is 550×550 pixels, the batch size is of 8356

samples, training is let to run for 300,000 iterations (62 epochs), with a learning rate (LR) schedule: LR357

starts at 10−4, and is further reduced after 200,000 iterations to 10−5, and then further at 275,000 iterations358

to 10−6. Stochastic gradient descent (SGD) is used in all cases as the optimizer, and is configured with a359

value of γ = 0.1, with a momentum of 0.9 and decay of 5 ·10−4.360

Regarding the loss function used, it has three components: a classification loss Lcls, a box regression361

loss Lbox, and a mask loss Lmask; with weights of 1.0, 1.5, and 6.125, respectively. Both Lcls and Lbox are362

defined as done in Liu et al. (2016). To compute the mask loss, a pixel-wise binary cross entropy (BCE),363

Eq. 1, is taken among the set of assembled masks M and the set of ground truth masks Mgt:364

Lmask = BCE(M,Mgt) . (1)

5.3 Proposed size regression experiments365

For the validation of the regression module, several regression models will be compared in terms of366

accuracy and performance. The regression model employed will be required to perform fish size estimation,367

and additionally, learn the image calibration required to transform the images during training, given the368

ground truth fish sizes estimated via visual metrology (i.e. the calculated homography). For this part of the369

system, a series of five experiments is proposed: first, select a subset of best-performing regressors, from370

the 25 most common in the literature; then, reduce the selection further by checking their performance371

with hyperparameter tuning; following that, select algorithms that perform the best after normalization of372

the data; next, apply a 10 k-fold validation, and verify the results; and, finally, compare the results obtained373

to those employing the corner data (i.e. image calibration information). Please note this last experiment374

consists of providing data, i.e. the tray handle corner data, that would not normally be available at system375

runtime, since it consists of human-labelled data that is provided only during training. However, for the376

sake of completeness, and to verify the performance of the system in this ideal situation, this experiment377

is also included here.378

As will be seen from the initial results, the gradient boost regressor (GBR) model defined by Zemel379

and Pitassi (2000), extra trees (ET) proposed by Geurts et al. (2006), and categorical gradient boosting380

regressor (CatBoost) presented by Prokhorenkova et al. (2018) seem to be the models with a better fit to the381

data. This is why these are selected for subsequent experiments. However, for the sake of completeness,382

support vector machine (SVM) Suthaharan (2016) variants have been included in all experiments, as a383

baseline for comparison. These SVM variants are: SVM with a radial kernel (which is appropriate for384

this type of data), as well as SVM with a linear kernel.385

6 RESULTS AND DISCUSSION386

This section will introduce the results, both from a quantitative and a qualitative point of view, for all387

experiments presented above for the IS module, and the fish size regressor.388

6.1 IS results389

As explained, the rationale behind the proposed IS experiments, which entail testing different backbone390

sizes for different variants of YOLACT, is to be able to determine whether a larger backbone for YOLACT391

would suffice to counter the improvements introduced by YOLACT++. This section introduces the results392

for the instance segmentation. Table 1 presents the mean average precision (mAP) values for each393

backbone size and YOLACT variant, for three different overlap acceptance values (50, 60, 70). Here,394

overlap is defined as the intersection-over-union (IoU) of predicted and true (expected) mask pixels.395
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Figure 6. Mean average precision (mAP) of mask scores at increasing minimum intersection over union
(IoU) overlap acceptance levels for all experiments described.

Additionally, Figure 6 introduces a curve plot, in which performance degradation is tested. That is,396

the X axis shows minimum IoU overlap acceptance tolerances, and the Y axis shows the mAP at those397

points. The figure shows a clear gap between YOLACT++ and YOLACT curves, which is indicative of398

how improvements introduced in YOLACT++ cannot be mimicked by increasing the backbone size on399

‘classical’ YOLACT. In the case of ‘classical’ YOLACT, backbone size does seem to matter, as ResNet-101400

seems to keep better performance as the minimum overlap acceptance tolerance goes up.401

Previous results have focused on detection rates, and detection accuracy of the masks (the ‘instance402

segmentation’ part of the network). However, if looking at classification results per-class (per-species)403

accuracies, confusion matrices can be plotted. These are shown in Figures 7 through 10. A particularity404

of these matrices, is that they all include an additional column (right-most), which accounts for missed405

detections or false negatives (labelled as ‘Missed (FN)’). This value refers to those fish specimens of a406

specific class label which were manually annotated (i.e. present in the ground truth), but the network407

detection missed. The color coding of the confusion matrices show darker shade in cell background408

representing better performance, if it is found in the diagonal of the matrix.409

Results of these confusion matrices can be analysed on a case by case basis, leading to some interesting410

insights. For instance, the first one, for YOLACT with a ResNet-101 backbone, is shown in Figure 7.411

Table 1. Mask mean average precision on test dataset

Network Backbone mAP50 mAP60 mAP70

YOLACT ResNet-101 57.32 51.24 42.26
YOLACT ResNet-152 65.99 60.65 48.70

YOLACT++ ResNet-50 68.81 66.88 60.78
YOLACT++ ResNet-101 70.42 68.86 62.88
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The best value in the diagonal can be found for Sepia officinalis (91.5%). This will be observed again412

in the other confusion matrices, and it makes sense, as cuttlefish is the most distinctive species, given it413

is the only cephalopod in the dataset, and all other classes belong to vertebrate fish species. If looking414

at other results, it can be observed that males and females of Symphodus tinca are slightly confused415

with each other (3% and 4.9%). These low values are a result of the common traits of specimens of this416

species, regardless of its displayed sexual dimorphism. Another observable fact is that, lower values in417

the diagonal can be attributed to high rates of missed detections, as shown by some darker than usual418

cells in the right-most column, e.g. Scorpaena porcus shows the lowest value (41.7%), with 50% missed419

detections (FNs), which has a reasonable explanation, as it is the second species with the lowest number420

of samples, as shown in the species distribution plot in Figure 5.421
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Figure 7. Confusion matrix for YOLACT network with ResNet-101 backbone. Values represent
percentage (%) of samples, normalized per species (row).

Next, on the second confusion matrix (Figure 8), representing results for YOLACT with a larger422

backbone (ResNet-152), the best classified species is again Sepia officinalis, with 93.6% (as explained).423

Something else worth mention is the lighter shades in the ’Missed (FN)’ column, which shows a general424

improvement in detection. This was also reflected in Table 1, in which the mAP50 value is improved from425

57.32% to 65.99% (9% difference). Even Scorpaena porcus, the least correctly classified species, shows426

an improvement in detection, as missed detections drop from 50% to 41.2%. These results indicate that a427

larger backbone size is beneficial, in this case.428

The next two confusion matrices show the results for the YOLACT++ variant. The third confusion429

matrix, presented in Figure 9, corresponds to YOLACT++ with a ResNet-50 backbone. In this case, the430

values at the diagonal are higher for 61% of the cases (species), as indicated by darker shades. This431

better performance is present even with a smaller backbone size, and is also visible through the mAP432
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values shown in Table 1, as there are 3, 6, and 12% improvements for the mAP values at 50, 60, and 70%433

minimum overlap requirement, respectively. Note well that this 12% is the highest improvement shown434

in the experiments. Cuttlefish (Sepia officinalis) is still the best-classified species, at 95.7%, which is435

the highest value for the species so far. All values seem to have increased, as demonstrated by harder436

examples such as Scorpaena porcus, with values around 80% to 85%. The worst score is assigned to437

Sphyraena sphyraena (58.8%), this has several possible causes: a high rate of missed detections, at 41.2%,438

which can be explained by the low number of specimens registered, and the odd shape of this specific fish439

species which is very long and can be presented rolled in different ways on the trays (therefore a detection440

problem, rather than a misclassification problem). However, missed detections (i.e. false negatives) are441

much lower for all other species. It can be concluded that YOLACT++ improvements can compensate442

the use of a smaller backbone. This has two additional benefits: first, smaller backbones can usually be443

trained in less time; and furthermore, a smaller footprint network can be embedded in edge computing444

hardware platforms, in case it was deemed necessary.445
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Figure 9. Confusion matrix for YOLACT++ network with ResNet-50 backbone. Values represent
percentage (%) of samples, normalized per species (row).

The last confusion matrix corresponds to YOLACT++ with a ResNet-101 backbone (Figure 10).446

Contrary to previous tests, Sepia officinalis does not show the best results, but other species show447

improved classification scores, leading to improved overall performance, as shown in Table 1 with mAP448

scores approximately 2% higher for this test. Specimens of Scorpaena porcus, which obtained low449

classification scores in the ‘classical’ YOLACT settings, now show 88.9% scores. However, Sphyraena450

sphyraena with 52.9% of correctly classified and 47.2% false negatives obtains worse results. A possible451

explanation to this is the low number of specimens for this species, and the variability in its presentation452

on the trays due to its greater than average length.453
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Figure 10. Confusion matrix for YOLACT++ network with ResNet-101 backbone. Values represent
percentage (%) of samples, normalized per species (row).
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Figure 11. Per-class (per-species) average precision (AP, in %) for all IS module configurations tested
(IoU≥ 0.5).

Figure 12. Per-class (per-species) average F1 score (F1, in %) for all IS module configurations tested
(IoU≥ 0.5).

To better visualize the comparison between IS network configurations, Figure 11 and Figure 12 show454

per-species (per-class) AP score bars and F1 score, respectively. Bars in lighter blue shades represent455

‘classical’ YOLACT, whereas bars in darker tones represent YOLACT++ configurations. It can be observed456

that the latter has a clear superiority in terms of AP scores for virtually all species. Furthermore, a larger457

backbone size with YOLACT++ seems to give it a minor boost.458

Finally, for illustrative purposes, Figures 13 and 14 show qualitative results. First, Figure 13 depicts459

results for all tested network configurations on the IS module. The top row shows success cases with460

good segmentation and classification. Please note some fish in (b) are not fully detected with the simplest461

backbone used, but this is improved in (c), (d), and (e). The lower row shows examples of cases where462

the networks failed (possible cause is odd shape of Sphyraena sphyraena, combined with overlap).463

Furthermore, Figure 14 shows images with overlapping specimens, and how this affects the behaviour of464

the IS module. On the left side, an example with good performance is shown, whereas the right image465

shows some missed detections due to heavy overlap.466

6.2 Regression results467

As introduced in Sec. 5.3, five experiments were conducted. First, the performance of 25 regression468

models is analysed for the problem. The results are summarized in Table 2 which shows error rates for the469

best 20 models tested using a machine learning software package Scikit-learn (2023). Different common470

error rates with regard to the size are provided: mean absolute error (MAE), mean square error (MSE),471

the coefficient of determination (R2), and the mean absolute percentage error (MAPE). Performance is472

also shown in terms of speed, by providing regression times in seconds (right-most column).473

As a second experiment, the six best-performing regressors, and SVM (used as a baseline) will be474

fine-tuned to further improve the results from the previous experiment. These six regressors are: extra475

trees, gradient boosting, categorical gradient boosting (CatBoost), light gradient boosting (Light GBM),476

random forest, and extreme gradient boosting (XGBoost). The results for the selected regression models477
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 13. Success and failure cases for segmented and classified specimens. Successes, top row (a)–(e):
Ground truth (a); YOLACT ResNet-101 (b); YOLACT ResNet-152 (c); YOLACT++ ResNet-50 (d);
YOLACT++ ResNet-101 (e). Failure cases, bottom row: (f)–(j): Same order as top row. Best seen in
colour.

(a) (b)

Figure 14. Examples of fish trays with specimen overlap. Successfully labelled (a); and with some
missing exemplars (b).
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Model MAE MSE R2 MAPE Time [s]

Extra Trees 1.8613 8.7115 0.7694 0.1173 0.101
CatBoost 1.8506 8.8161 0.7668 0.1172 1.211
Gradient Boost 1.8504 9.3102 0.7544 0.1166 0.075
Random Forest 1.8830 9.5934 0.7474 0.1175 0.201
Light GBM 1.9224 9.5624 0.7471 0.1201 0.021
XGBoost 1.9853 9.8369 0.7409 0.1252 0.076
k-NN 2.0806 10.1672 0.7312 0.1331 0.005
Linear 2.5980 15.2516 0.6071 0.1656 0.127
Ridge 2.5973 15.2517 0.6071 0.1655 0.003
Bayesian Ridge 2.5962 15.2524 0.6071 0.1655 0.003
Least Angle 2.6365 15.518 0.5993 0.1676 0.003
Huber 2.4311 16.4486 0.5823 0.1585 0.005
Decision Tree 2.6236 17.0694 0.5577 0.1617 0.007
Lasso 2.7333 19.2231 0.5162 0.1769 0.004
Elastic Net 2.7526 19.3541 0.5145 0.1768 0.003
OMP 2.6763 21.8864 0.4456 0.1753 0.003
AdaBoost 4.3506 29.9264 0.1917 0.3018 0.035
PAa 3.8979 31.7804 0.1534 0.2338 0.004
LLAb 4.3817 39.4312 -0.0028 0.2706 0.003
Dummy 4.3817 39.4312 -0.0028 0.2706 0.002
a Passive–Aggressive
b Lasso Least Angle

Table 2. Results for the fish size regression errors (in cm) of different regressors. The best 20 of a total
of 25 are shown, ordered by ascending mean square error (MSE). Error is provided using several common
metrics (MAE, MSE, R2, MAPE). The total time (Time) in seconds [s] is also provided for comparison of
regression performance.
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are shown in Table 3.478

Regressor MAE (cm) MSE R2 MAPE

Extra Trees 1.8108 8.8154 0.769 0.1152
GBR 1.8339 8.7386 0.7705 0.116
CatBoost 1.8033 8.6005 0.7742 0.1144
Light GBM 1.8780 8.9229 0.7649 0.1188
Random Forest 1.8329 9.0251 0.7645 0.1161
XG Boost 1.8452 8.8572 0.7662 0.1158
SVM (baseline) 1.9343 10.1436 0.736 0.1244

Table 3. Comparison between results of the best six regression models considered (and SVM, as a
baseline), when parameter tuning is applied. Best result in bold.

Next, the third experiment evaluates the selection of an appropriate normalization for the data. Three479

different normalizations have been tested: standard normalization (i.e. subtraction of mean and division480

by standard deviation), as well as MinMax on the input, and MinMax on the input and output; which is481

performed by subtracting the minimum value and dividing by the range (max-min). Table 4 presents the482

results for this experiment, which show MinMax normalization on the input as the best-performing.483

Contrary to other normalization schemes, MinMax does not change the shape of the distribution,484

preventing reduction in weight or importance of outlier instances in the model, which could explain485

its advantage in this case, given the particularities of some instances in the used dataset, which might486

be considered outliers, as per the common definition of this term, i.e. errors in measurement or very487

uncommon instances. However, in the dataset used, some species like the above-mentioned Sphyraena488

sphyraena, which represents 2% of instances (124 fish, i.e. can be considered rare), has annotated sizes489

that are generally larger than for all other species. Specimen lengths for this species are in the range of 25490

to 83 cm (x̄ = 45.00±12.62 cm). Yet, in general, the dataset is in the 5 to 83 cm range (x̄ = 17.00±6.91491

cm). As a consequence, all instances of Sphyraena sphyraena can be considered an outlier, as they are492

longer than most other fish.493

Regression No Standard MinMax MinMax
model scaling on input on input on I/O

GBR 10-fold 1.8564 1.8564 1.8539 1.854
Extra Trees 10-fold 2.0052 1.9969 1.9857 2.0119
SVM 10-fold 4.3581 1.8471 1.8195 21.5391
CatBoost 10-fold 1.7954 1.7920 1.7710 1.7824

Table 4. Comparative of MAE in centimetres between the best regression models analysed and different
normalization of the data input and output.

In the fourth experiment, a 10 k-fold validation is applied on the MinMax normalized data from the494

previous phase. The results in Table 5 show the mean performance of 10 different 10-fold runs, with495

varying initialization seeds, to avoid possible situational errors due to causality (which explain the slight496

difference in the results). As in previous results, SVM is included as a baseline, but this time with two497

different kernels, linear and radial.498

Finally, in the fifth and last experiment, additional input fields are provided to the regressor. These499

inputs consist of data that would usually be unavailable, that is data regarding calibration, namely:500

coordinates of tray corners (or tray handle corners, more precisely). The idea behind the experiment is501

to assess how these four two-dimensional points can assist the regressor, and reduce error in the output502

bounding boxes and segmentation masks obtained. These errors are caused by the perspective, distance,503

and other image differences. The goal is to determine by how much do results improve when the regressor504

is provided with these data, even if they are part of the ground truth (i.e. they were manually annotated),505

and cannot be therefore be automatically obtained by the system. Table 6 shows the results for this last506

experiment, and confirms that this information helps improve the results. This opens the interest for future507
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Regression model MAE [cm] R2

GBR 10-fold 1.8501±3.0099 0.7613
Extra Trees 10-fold 1.9715±3.0396 0.7462
SVM Linear 10-fold 2.6711±4.4582 0.4746
SVM Radial 10-fold 1.8741±3.1885 0.7307
CatBoost 10-fold 1.7614±2.7633 0.7926

Table 5. Final results with the best regression models analysed with the 3 original inputs (bounding box
in pixels, segmentation mask area in pixels, species class label).

(a) Output for tray of Sepia off cinalis (b) Output for tray of Pagrus pagrus

Figure 15. Example output images for the proposed system, in which masks, bounding boxes, species
labels, and specimen sizes are shown for each detected fish instance. Furthermore, using statistical data
from the field, weight (biomass) is also provided, which is derived from size estimations.

automated tray corner detection systems. It also shows that the absolute error can be reduced by 0.49 cm508

when including this information, or conversely, that the uncalibrated system only performs 0.49 cm worse509

than the calibrated version. That is, depending on other constraints (e.g. economical, time, etc.) it might510

be worth keeping an uncalibrated system, and sacrifice accuracy by a 0.49 cm margin.511

Regression model MAE [cm] R2

GBR 10-fold 1.3304±2.0937 0.8740
Extra Trees 10-fold 1.4098±2.3239 0.8531
SVM Lineal 10-fold 1.8234±3.3598 0.6996
SVM Radial 10-fold 1.2994±2.2449 0.8620
CatBoost 10-fold 1.2713±2.0616 0.8840

Table 6. Final results with the best regression models analysed with the 3 original inputs and calibration
inputs, i.e. 4 points of the tray (x, y).

6.3 End-to-end results512

Qualitative results from the whole system can be seen in Figure 15, in which both outputs (yNN and ysize)513

are combined and visually represented. Furthermore, expert, statistical data from the field of marine514

biology is used in the form of size-to-weight charts to derive weight (biomass) of each fish instance, based515

on the regressed fish size.516

7 CONCLUSIONS517

The main contribution of this paper is the proposal of an end-to-end system for fish instance segmentation518

(IS), as well as fish size regression. The system relies completely on uncalibrated images at the time of519
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inference for new images. To the best of our knowledge, there is no study performing automatic fish520

instance segmentation, species classification, and size regression from uncalibrated images for fish caught521

and presented in trays at fish markets. The results obtained so far are encouraging, and might be useful522

for a flourishing 4.0 fishing industry, which not only includes big players, but also small-scale, artisanal523

fish markets. Moreover, these techniques can generalize to other fields or scenarios, where IS and size524

regression are needed, and in which fitting and setting up fixed cameras is not possible.525

To summarize the workflow, the system first efficiently uses the YOLACT family of neural networks,526

which has previously been trained from manually annotated data of fish species and correct fish instance527

segmentations. Additionally, visual metrology data is used to determine the homography, and therefore be528

able to convert pixel sizes to real-world sizes in centimetres during training of fish size regression. The529

data thus collected from the neural network and the visual metrology are then used to train the regressor.530

During inference of new images, uncalibrated images are used, and all information, i.e. fish species labels,531

instance segmentation, and fish sizes are obtained.532

The proposed method avoids the use of visual metrology during inference, which would require a533

fixed calibrated camera, or the use of corner markers in fish trays or other visible ‘token’ objects in the534

image, for on-the-fly calibration of the image.535

This lack of calibration at inference is justified by the nature of some wholesale fish markets, especially536

smaller ones, since artisanal markets lack the infrastructure (e.g. conveyor belts, digitized auctioning537

systems, etc.). The ultimate goal, here, is to foster the digitization of traditional and artisanal fishing538

industries, and provide them with reliable and thorough data on fish catches, sales, weights, etc. Therefore,539

the method proposed here represents a first step towards this more ambitious series of systems for the540

digital management of fisheries. For validation of the proposed method, the DeepFish dataset is used,541

which includes a large amount of annotated images of fish trays from a local fish market. This is publicly542

available, and provided to the community for further research into other similar problems, as well as for543

other more general applications.544

Using this annotated data, and data derived from it, the IS and regressor modules have been trained.545

The point of the IS evaluation was to show the performance of a set of YOLACT variants, and demonstrate546

their utility for the task at hand, and see the impact of different backbones in the performance and547

inference time. Results show that, the best performance were obtained using YOLACT++, with the larger548

ResNet-101 backbone, which discards the hypothesis of the larger backbone. Furthermore, results also549

show that it is possible to detect interspecies subtleties e.g. fishes of the Mullus genus, i.e. M. barbatus550

and M. surmuletus are very similar, but correctly identified with high confidence; or S. tinca specimens551

being correctly distinguished by sex. In general, results are very promising with the proposed solution, in552

terms of instance segmentation, and species classification.553

With regard to the fish size regression, categorical gradient boosting regression (CatBoost) has been554

proven to be the most suitable model for the problem, after normalization (using MinMax), and hyperpa-555

rameter tuning. Furthermore, additional experiments have shown that regression results improve when556

additional real-world fish tray size data (e.g. handle corner points, or similar) are included as additional557

inputs to the regressor, since the IS module works on uncalibrated images of similar characteristics. These558

experiments show that this data, albeit unavailable at inference time in our system, might be useful to559

better tune the fish regression module, as it contains valuable information regarding the real-world sizes.560

This opens lines for future work in this regard.561

One line for future work would be to include an automated tray corner location module. However,562

when fitting the system in larger-size fish markets in the future, it might not be necessary to have this563

module, as it may be possible to use fixed cameras over pre-existing facilities such as auction conveyor564

belts. It would therefore be an optional module in the system. Other lines of future work include, in the565

short term, calculating biomass extraction rates (total, and per-species) based on estimated fish sizes, or566

similarly via areas (from masks) or volumes (if using depth information). Furthermore, in the medium567

term, geographical vessel information, related to fish batches, is to be included in the analyses to better568

understand the availability and status of fishing stocks in a certain area.569
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