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Abstract—In this paper, we present a novel reliability analysis
of massive Internet of Things (IoT) connectivity in cellular
networks. In massive IoT networks, IoT devices sporadically and
unpredictably send short data packets to nearby base stations
(BSs), potentially interfering with other IoT devices with whom
they share the uplink channel. Assuming slotted ALOHA random
access policy, we investigate the probability that an IoT device
transmitting a short data packet is not decoded at the nearest BS
under Nakagami fading. We derive error probability expressions
combining the tools of finite block-length (FBL) information
theory and stochastic geometry. Derived FBL-based results are
confirmed by Monte Carlo simulations and further compared
with the asymptotic expressions available in the previous studies
that are obtained under assumption that a device transmits
asymptotically long data packets. Numerical results confirm the
accuracy of the obtained expressions and their applicability
to the massive IoT system design and performance evaluation
under a wide range of system parameters. For example, the
matching between the values obtained by numerical integration
and approximation results of the FBL error probability is in
the range between 97.6-99.4 % for different choices of the
parameters.

Index Terms—Stochastic geometry, short-packet communica-
tion, slotted ALOHA, Finite Block-Length.

I. INTRODUCTION

Massive Internet of Things (IoT) cellular networks such as
Narrowband IoT (NB-IoT), LoRaWAN or SigFox are designed
to provide massive connectivity to billions of IoT devices that
were, until recently, out of reach of wireless IoT technologies
[1]. In massive IoT networks, each device engages in a short-
packet uplink transmission under an unpredictable activity pat-
tern. To efficiently accommodate such a sporadic short-packet
transmission, variations of Slotted ALOHA (SA) are com-
monly used as a random access mechanism [2]. When a device
accesses an SA-based massive IoT network, its transmission is
affected by channel impairments and interference from other
randomly scattered active devices, while obeying fundamental
limits of short-packet transmission quantified by finite block-
length (FBL) information theory [3]. The error probability
analysis in short-packet IoT communication scenario rests
on two main pillars: the interference analysis in large-scale
wireless systems obtained using stochastic geometry [4]–[6],
and error probability analysis obtained using FBL information
theory [7], [8].

Analysis of uplink transmissions in general cellular net-
works context of coverage probability using the tools of
stochastic geometry is well understood [9]. The underlying
assumption in this and many other stochastic geometry-based
studies that followed is that an IoT device will be decoded at
a given BS subject to the threshold signal-to-interference-and-
noise (SINR) criteria, i.e., that the device’s instantaneous SINR
at the BS is above a predefined threshold value. However,
under practical system limitations, the error probability vs
SINR behavior does not exhibit a sharp threshold behavior
unless, e.g., we assume that the system is operated at the Shan-
non limit using asymptotically long capacity-achieving codes.
This indeed is an implicit assumption in coverage probability
studies based on SINR-threshold decoding criteria. However,
for practical data packet lengths, the error probability vs
SINR behavior departs from sharp SINR-threshold transition
which makes the existing coverage probability studies only an
approximation of a real-world system performance behavior,
especially for IoT connectivity services dominated by short
packet communications.

In the context of massive IoT networks that rely on short-
packet communications1 , extension of these results using FBL
tools leads to more precise error probability analysis. The need
to revise the design methodology for wireless network services
relying on short packet communications was initially discussed
in [3]. The work in [10] addressed the design of massive
IoT networks using stochastic geometry under asymptotic
(threshold-based) regime. Extension of massive IoT networks
to the FBL case, closest to our goal in this work, appeared in
the following recent works [12], [13]. However, their work
focuses on achievable rate and capacity analysis and does
not explicitly target reliability and derivations of closed-form
error probability expressions. We note that a combination of
stochastic geometry and FBL analysis is gaining atraction and
was adopted in recent studies of error probability meta distri-
bution [14], smart grid communications [15], covert mmWave

1Short packet communications refer to communication scenarios charac-
terised by small size and specific requirements of transmitted data packets.
Finite block-length information theory provides tools for reliability analysis
of finite-length data block transmission protected by error correction coding
and decoding procedures in channels with noise, and is particularly relevant
in the context of short packet communications.



communications [16], reconfigurable intelligent surface (RIS)-
assisted communications [17], downlink ultra-reliable and low-
latency communications [18]. These studies are followed by
proposals of a transmission schemes that are designed to
optimise error rates in the FBL regime [19], [20].

In this paper, we focus on error probability analysis of short-
packet communications in massive IoT networks and improve
the above research studies in several important directions.
Firstly, we refine the existing threshold-based error probability
result by explicitly taking into account that a device transmits
short data packets. Exploiting the results of FBL information
theory, we derive a new approximate albeit accurate FBL error
probability expressions and compare them with the classical
threshold-based results. Secondly, for the latter asymptotic
threshold-based results, we present a novel and exact closed-
form expressions of error probability under Nakagami fading,
thus improving the existing results in the literature.

The Nakagami-m distribution offers several advantages
compared to other fading models. It is a generalized distri-
bution capable of representing various fading environments
and demonstrates greater flexibility and accuracy in fitting
certain experimental data when compared to distributions like
Rayleigh or log-normal [21]. Additionally, it’s important to
highlight that slotted ALOHA-based random access does not
reduce general applicability of our results. This is because
widely adopted real-world massive IoT protocols such as NB-
IoT and LoRaWAN utilize adapted forms of SA in their
network access procedures. Therefore, this underscores the
relevance and applicability of our findings.

The contributions of this paper are as follows:
1) We provide new approximate yet accurate error proba-

bility expressions of massive IoT networks in the FBL
regime.

2) We derive approximated closed-form series representa-
tions expression of the error probability in FBL regime
which improves upon existing literature that often re-
stricts analysis to Rayleigh fading scenarios.

3) Our asymptotic threshold-based error probability results
are exact, thus improving the accuracy of approximate
results presented in [10].

4) Our results are developed using different analytical
approach, targeting a sufficiently general case for which
the probability density function (PDF) of interference
can be expressed in the closed form [22], [23]. As a
consequence, as compared to the results in [10], [13],
our results target derivation of explicit error probability
expressions, instead of targeting the average rate and
capacity analysis.

Monte–Carlo simulations are used to validate the derived
analytical results. Numerical results presented in the paper
evaluate the accuracy of the obtained expressions in both
asymptotic and FBL regime. A careful investigation of error
probability is delivered across the range of system parameters
(the density and activity of devices, the density of BSs, and
the error-correcting code rates and lengths) aiming to facilitate
optimal system design of future massive IoT networks.

The rest of the paper is structured as follows. In Section
II, we define the system model and set the main hypothesis.
In Section III, we analyze the error probability and channel
coding rate based on the FBL regime approach. In Section
IV we give the detailed analysis of FBL and asymptotic
(threshold-based) error probability. In Section V, we present
and discuss the numerical results and, finally, in Section VI,
we close the paper with the main conclusions.

II. SYSTEM AND INTERFERENCE MODEL

We consider a large-scale massive IoT cellular network
that contains a set of BSs whose locations form a stationary
Poisson Point Process (PPP) denoted by Φb of spatial density
λb on the R2 plane. The network connects a set of IoT
devices whose locations form a stationary PPP Φu of spatial
density λu on R2. The devices send data to BSs using the SA
protocol where we assume the time is divided into equal-length
slots. In each slot, every device is active with probability p
independently of activity of other devices in the same slot. All
active devices are assumed to be attached to the geographically
nearest BS. We are interested in the probability that an active
device will be successfully decoded at the nearest BS [10]. The
error probability analysis will rely on stochastic geometry as
an established approach to evaluate the aggregate interference
in large-scale wireless networks.

Assuming normalized unit transmit power and Nakagami
fading environment, the received power P at a reference BS
at the distance r from a reference device is defined as

P = hr−η, (1)

where r−η represents the path-loss attenuation with a path loss
exponent η, and h is the fading power channel coefficient.
Aggregate interference I at any given point in the network
originating from the set of all transmitters is defined as

I =
∑
i∈Φu

Pi =
∑
i∈Φu

aihiri
−η, (2)

where ri is a distance of the device i ∈ Φu from the reception
point, ai is a Bernoulli random variable with parameter p
indicating its activity, and hi is a realization of its fading
power. Instantaneous SINR [11] of a device at the distance
r from a reference BS is

γ =
hr−η

I + σ2
≈ hr−η

I
, (3)

where σ2 is the background noise power, which is usually
negligible compared to the cumulative interference.

1) The PDF of the fading power: We consider Nakagami
fading where the fading power H follows

fH(h) =
mm

Γ(m)
hm−1 exp(−mh), h ∈ (0,+∞], (4)

and m is the fading parameter. For m = 1, we obtain a special
case of Rayleigh fading.



2) The PDF of the distance between the device and the
nearest BS: In the nearest BS model, the device attaches to
the geographically nearest BS. The PDF of the distance R
between the device and the nearest BS for a PPP is [10]

fR(r) = 2πλbr exp(−λbπr
2), r ∈ (0,+∞]. (5)

3) The PDF of the interference power: In order to de-
termine the closed-form expression of the PDF of aggregate
interference I , we start with its Laplace transform (LT) defined
as [4]

LI(s) = exp
(
− pλuπE

[
h

2
η
]
Γ(1− 2

η
)s

2
η

)
, (6)

where Γ(z)
∫∞
0

x z−1e−xdx is the Gamma function [24,
(8.31)] and E[·] is the expectation operator. For Nakagami
distributed fading power, the LT of the interference power
equals

LI(s) = exp
(
− pλuπ

Γ
(
m+ 2

η

)
Γ(m)m

2
η

Γ(1− 2

η
)s

2
η

)
. (7)

Authors in [22] noted that the functional form of LT in
(7) belongs to a class of Kohlrausch-Williams-Watts (KWW)
functions defined as LI(s;β) = e−sβ , with parameter β
defined as [23]

LI(s;β) =

∫ ∞

0

exp(−sI )fI (x;β)dI = exp(−sβ). (8)

They provided closed-form expressions of the interference
power PDF fI (x;β) for rational (fractional) values of β. Since
in our derivations we will require closed-form expression of
the interference power PDF, we will restrict our attention
to fractional β values. In general, the PDF fI (x;β, t) of I
is obtained using the scaling property of inverse LT (ILT)
1
tβ
fI (

x

t
1
β
;β, t) ⇐⇒ exp(−(t

1
β s)β) = exp(−tsβ) [22].

The ILT of LI(s;β) is investigated for the values of β = β1

β2

representing a ratio of two integers β1 and β2. For example,
setting β1 = 1 and β2 = 2, the ILT of LI(s;

1
2 ) leads to the

simplest PDF expression, known as Lévy distribution

fI (x) =
t exp(− t2

4x )

2
√
πx

3
2

, (9)

where t = πpλu
Γ
(
m+ 2

η

)
Γ(m)m

2
η
Γ(1− 2

η ). In the following analysis,

we considered the suburban environment, which corresponds
to the known case where value of coefficient η = 2

β = 4,
leading to

t = πpλu

Γ
(
m+ 1

2

)
Γ(m)m

1
2

Γ(
1

2
), (10)

However, we note that the subsequent analysis is valid for
any rational value of β for which fI (x) is available in the
closed form and that such values of β are sufficient to closely
approximate relevant path loss exponent η values [22].

Finally, under the system and interference model described
above, our goal is to calculate the error probability that an
active IoT device is decoded at the nearest BS.

III. FINITE BLOCK-LENGTH REGIME

In this paper, we consider a more precise massive IoT
network model where IoT devices transmit short-length data
packets encoded using finite-length error correcting code. Our
goal is to derive error probability of decoding a short-length
data packet of a single active user by taking into account
interference contribution from all other active users in a given
slot. To put it in the Shannon model context, we are interested
in a communication system design that is capable of reliably
transmitting with as large as possible rate R(n; ϵ, γ) of bits per
symbol of information, while using a code of length n symbols
and achieving error probability below ϵ over the channel of
parameter γ. Assuming asymptotically long codes n → ∞ and
vanishing error probability ϵ → 0, and treating interference as
Gaussian noise, we know that we can operate at the maximum
rate R∗ equal to Shannon capacity R∗ = C (γ) = log2(1+γ).
In other words, for a fixed code rate R, there exists a
maximum channel parameter γth under which communicat-
ing at rate R is still reliable. This fact justifies common
asymptotic (threshold-based) criteria for evaluating coverage
probability in large-scale wireless networks (discussed in Sec.
IV.C). Under asymptotic (threshold-based) criteria, the error
probability of data packet transmission ϵ(γ) as a function of
channel parameter γ is approximated with a step function, i.e.,
ϵ(γ) = 1 if γ < γth, otherwise, ϵ(γ) = 0. For R = 0.5, the
asymptotic ϵ(γ) step function with γth = 2R − 1 = 0.4142 is
illustrated in Fig. 1.

The above asymptotic approximation of error probability
can be made more precise using FBL information theory. For
a code of finite length n and the target error probability ϵ, the
maximal achievable code rate R(n; ϵ, γ) can be approximated
via normal approximation [7]

R(n; ϵ, γ) = C(γ)−
√

V (γ)

n
Q−1(ϵ), (11)

where Q−1(·) denotes the inverse of Q(x) =
∫∞
x

1
2π e

− t2

2 dt

(the Gaussian Q-function), V (γ) = γ γ+2
(1+γ)2 log

2
2(e) is chan-

nel dispersion, and C (γ) = log2(1 + γ) is Shannon capacity.
From (11), using FBL normal approximation and treating
interference as a noise, we obtain the (block) error probability
(i.e., the probability a codeword is not decoded at the receiver)
conditioned on the SINR γ as

ϵ(γ) = Q

(√
n

V (γ)
(C
(
γ)−R

))
. (12)

Thus, instead of a step-function form of error probability
ϵ(γ), in the following analysis, we apply more precise FBL
approximation (12). The FBL normal approximation of error
probability for R = 0.5 and code lengths n = {256, 1024}
are illustrated in Fig. 1.

Linear approximation of Q-function: In order to ap-
proximately solve intractable FBL-based error probability ex-
pressions, we will linearly approximate the Q-function form
expression in (12). We use a linearization technique [25] for



Fig. 1. Comparison between threshold based method γth = 0.4142, Q-
function in (12) and approximation of a Q-function in (13), for the rate R =
1
2

.

the Q-function in (12), i.e., Q
(√

n
V (γ) (C

(
γ) − R

))
≃ J(γ)

at point γ = θ, to write

J(γ) =

{ 1, γ ≤ θ − a
1
2 − µ√

2π
(γ − θ), θ − a ≤ γ ≤ θ + a

0, γ ≥ θ + a

, (13)

where a =
√

π
2µ2 for θ = 2R−1, µ =

√
n

2π(22R−1) log2
2 e

. Lin-
ear approximation of FBL-based error probability expression,
for R = 0.5 and n = {256, 1024} is shown in Fig. 1.

IV. DETAILED ERROR PROBABILITY ANALYSIS

We now return to the main problem of calculating the error
probability that an active IoT user is decoded at the nearest
BS. Both FBL and asymptotic (threshold-based) approaches
are considered.

A. FBL Error Probability

Based on FBL error probability definition previously given
in (12), the final error probability expression for considered
uplink communication system can be determined as follows.
By conditioning the error probability in (12) over the inter-
ference γ, and then further conditioning the interference on
fading h and active IoT device-to-nearest BS distance r, we
obtain the general FBL error probability expression

P fbl
e = ϵ =

∫
γ

ϵ(γ)fΓ(γ)dγ

=

∫
r

(∫
h

(∫
γ

ϵ(γ)fΓ(γ|h, r)dγ

)
fH(h)dh

)
fR(r)dr.

(14)

In (14), fH(h) and fR(r) are defined in (4) and (5), re-
spectively. Furthermore, the conditional SINR distribution
fΓ(γ|h, r) can be obtained using (3), and evaluated as

fΓ(γ|h, r)=fI(Φ
−1(γ))

∣∣∣∣∣dΦ−1(γ)

dγ

∣∣∣∣∣= t exp(− t2γ
4hr−4 )

2
√
πhr−4γ

, (15)

where the PDF fI(x) is given in (9). Although (14) can not
be derived as a closed-form expression, it can be evaluated by
numerical integration or approximated as given below.

B. Approximated FBL Error Probability

Since the error probability in (14) can not be derived as
a closed-form expression, the linear approximation of Q-
function in (13) is applied. For a short-packet uplink commu-
nications, after following derivation in Appendix A, the error
probability is tightly approximated as

P fbl
e ≈ a1

Γ(m)π
G 2,3

3,3

(
z1

∣∣∣ 1,0, 12
1
2 ,m,0

)
+

a2
Γ(m)π

G 2,3
3,3

(
z2

∣∣∣ 1,0, 12
1
2 ,m,0

)
− b1z1

(
c+ dz1

m− 1
2

)
+ b2z2

(
c+ dz2

m− 1
2

)
,

(16)

where

a1 =

(
1

2
+

µθ√
2π

)
, a2 =

(
1

2
− µθ√

2π

)
b1 =

µ(θ + a)√
2π

, b2 =
µ(θ − a)√

2π
,

z1 =
t2(θ+a)m

(λbπ)2
, z2 =

t2(θ−a)m

(λbπ)2
,

c =
Γ(m− 1

2 )

3
√
πΓ(m)

, d =
(−1)mm

m+ 1
,

(17)

where Gm,n
p,q (· | ·· ) is the Meijer’s G-function [26, (9.301)].

Note that argument of the Meijer’s G-functions in (16)
is very small for practical system parameters ( t

2(θ±a)m
(λbπ)2

→
0). Series representations of Meijer’s G-function when its
argument tends to zero can be applied by utilizing [26,
(07.34.06.0001.01)], which lead to the simple closed-form
expression of the error probability

P fbl
e,app≈a1

(
3cz1

1
2 + (−1)mzm1

)
+ a2

(
3cz

1
2
2 + (−1)mzm2

)
− b1z1

(
c+ dz1

m− 1
2

)
+ b2z2

(
c+ dz2

m− 1
2

)
.

(18)

C. Asymptotic (threshold-based) Error Probability

In order to better understand the novel FBL approximation
(16), we step back and rederive the classical asymptotic
threshold-based error probability analysis. Note that we do
it for a more general Nakagami fading, while providing
exact closed-form expressions, unlike approximate expressions
presented in [10], [13]. The threshold-based decoding criteria
assumes that an error event occurs if the SINR γ, defined in
(3), is below a predefined threshold γth. We obtain the SINR
threshold value γth for a given R and n → ∞ as discussed in
Sec. III [10].

Formally, the asymptotic error probability Pe can be ex-
pressed as

Pe = P[γ ≤ γth] = P
[hr−η

I
≤γth

]
=1−P[I ≤ hr−η

γth
], (19)

where γth represents the SINR threshold.



Fig. 2. Comparison between FBL error probability P fbl
e obtained by

numerical integration (14), approximation (16) and series approximation (18)
for different R, m and fixed values of λb = 0.04, n = 128, and p = 0.01.

The probability that a device, affected by Nakagami fading,
is not decoded at the nearest BS under the threshold-based
criterion can be determined as

Pe=1−
∫ ∞

0

(∫ ∞

0

(∫ hr−η

γth

0

fI(x)dx

)
fH(h)dh

)
fR(r)dr, (20)

where fH(h), fR(r) and fI(x) are defined in (4), (5) and (9)
respectively.

For the suburban environment we present a novel closed-
form expression for the asymptotic error probability as

Pe = 1− 1

Γ(m)π
G 3,2

3,3

(
t2γthm

(λbπ)2

∣∣∣∣ 0, 12 ,1
1
2 ,m,0

)
. (21)

Analysis is valid for any rational value of β for which fI (x) is
available in the closed form. Note that this result is a closed-
form solution, completing the approximate analysis in [10].
Complete derivation is shown in Appendix B.

Approximation: After applying [26, (07.34.06.0001.01)] to
transform the Meijer’s G-function into a series form when its
argument tends to zero, and after removing the higher-order
terms of the series representation, the approximation of the
threshold-based error probability for large values of λb and/or
low values of λu or p is derived as

Pe ≈ 3cz
1
2 − (−1)mmzm, (22)

where z = t2γthm
(λbπ)2

and c is previously defined in (17).

V. NUMERICAL AND SIMULATION RESULTS

In this section, using the analysis presented in Sec. IV, we
consider the design and performance evaluation of the massive
IoT network model.

A. Numerical results

Fig. 2 depicts comparison between the results of the FBL
error probability P fbl

e obtained by numerical integration in

Fig. 3. Density of users λu vs. different coding rates R for error probability
in FBL regime for µ = 1.

Fig. 4. Error probability vs. λb for asymptotic method Pe where m = 1,
R = 1/8 and n → ∞, and FBL method P fbl

e with R = 1/8 and n = 128.

(14), approximation defined in (16) and series approxima-
tion defined in (18). Increasing the code rate R leads to
deterioration of error probability. For lower values of the
Nakagami parameter m, fading is more severe and wors-
ening of the system performance is noticed. If we observe
the difference between the numerical integration and both
approximation curves, we note that for the higher code rates,
the approximation becomes more accurate. This follows from
linear approximation of Q-function, where as the code rates
R increases, one can easily verify the improved accuracy of
linear Q-function approximation. The matching between exact
values obtained by numerical integration and approximation
results of the FBL error probability is in the range between
97.6-99.4% for different choices of the parameters R, m and
fixed values of λb = 0.04, n = 128, and p = 0.01.

Using the FBL error probability P fbl
e approximation, one

can easily explore the system performance across the range
of code rates R and user densities λu as shown in Fig. 3.
From the figure, for a desired P fbl

e , a range of (λu, R) pairs



Fig. 5. Error probability Pe vs. density of users λu for asymptotic threshold-
based method approximation (21) and series approximation (22). Different λb

and m are used, activation rate is p = 0.01 and threshold is γth = 0.4142.

provide a solution. In other words, one can counterbalance the
increase in the system load λu with appropriate control of the
code rate R while achieving a desired reliability level.

Fig. 4 presents the error probability dependence on the
BSs spatial density λb for both asymptotic (Pe) and FBL
(P fbl

e ) method. For the former, we assume capacity-achieving
error-correcting code of rate R = 1

8 and length n → ∞,
while for the latter, we assume normal approximation achiev-
ing code of the same rate and n = 128 (FBL). In order
to mitigate transmission latency and yield high reliability,
codeword lengths of the order of n ≈ 100 symbols are
most commonly used in simulation studies [3], [7]. The error
probability is presented for several values of users densities λu

and activation probabilities p. Increasing both the activation
probability p and the density of users λu, the error probability
deteriorates, due to the increase in aggregate interference.

Fig. 5 shows the error probability Pe a device experiences
at its nearest BS for two values of BS density (λb = 0.04 and
λb = 0.16), under varying density of users λu, where a device
activity rate is fixed to p = 0.01. The results of closed-form
expression (21) match approximated series representation (22),
validating the analysis from Sec. IV.C. The graph demonstrates
the following trends: i) increasing the density of BS λb results
in the decrease of the error probability due to the shift of fR(r)
towards lower distances, ii) error probability increases with
higher λu due to increased interference, and iii) increasing the
Nakagami parameter m results in decrease in error probability.
Additionally, approximate error probability under Rayleigh
fading results derived in [10] are also presented in Fig. 5,
which are overlapping with our results for m = 1 (the special
case of Nakagami fading scenario).

B. Numerical vs Simulation Results Analysis

We develop a simulator in which devices and BS are de-
ployed according to a PPP. To verify our results, the probability
of error obtained analytically has been compared to their

Fig. 6. Comparison between FBL error probability P fbl
e obtained by

numerical integration (14) and simulations for different density of users λu,
and Nakagami parameter m. Values are fixed for density of BS λb = 0.08,
code length n = 64, and activation probability p = 0.01.

Fig. 7. Error probability Pe vs. threshold γth, for asymptotic threshold-based
method approximation (22). Different density of users λu and activation rates
p are used, density of BS is λb = 0.04 and Nakagami coefficient m = 6.

respective Monte Carlo simulation results with 3000 trials.
Comparison between FBL error probability (P fbl

e ) obtained
by numerical integration and simulations is depicted in Fig. 6
for different values of Nakagami parameter m and density of
users λu. The graph shows almost perfect matching between
simulation and analytical results, and by increasing the density
of users λu, and code rate R the error probability deteriorates.

In order to verify our results, the probability of error
for the threshold based method has been compared to their
respective Monte Carlo simulation results with 3000 trials.
Fig. 7 shows the error probability Pe a device experiences at its
nearest BS versus threshold γth in dB scale. For this network
configuration, as expected, the probability of error gets higher
with the increase of threshold level. The error probability is
shown for several values of users densities λu and activation
probabilities p. Increasing both the activation probability p and
the density of users λu, the error probability deteriorates, due
to the increase in aggregate interference.



VI. CONCLUSION

In this work, we analysed expressions for error probability
an IoT device experiences at the nearest BS under Nakagami
fading and interference from PPP-distributed interferers. We
focus on the finite-block length model, where an approxi-
mate analysis based on FBL information theory is derived.
We presented the detailed derivation and investigation of
numerical accuracy of both FBL and asymptotic expressions,
and demonstrated their usage in the design of massive IoT
networks. In the future work, we plan to extend our results to
various fading and shadowing distributions and random access
models beyond the conventional but widespread SA protocol.

ACKNOWLEDGMENT

This work has received funding from the Horizon 2020
research and innovation staff exchange grant agreement No
101086387, the 2021-2023 China-Serbia Inter- Governmental
S&T Cooperation Project (No. 6), the Science Fund of the
Republic of Serbia, grant number 6707, REmote WAter quality
monitoRing anD IntelliGence – REWARDING and by the
Secretariat for Higher Education and Scientific Research of
the Autonomous Province of Vojvodina through the project
“Visible light technologies for indoor sensing, localization and
communication in smart buildings” (142-451-2686/2021).

APPENDIX A

Approximation of Q(·) function at point θ = 2R − 1
based on a linearization technique was shown in (13). After
substituting (13) into (14), the approximation of the error
probability is defined as

P fbl
e ≈

∫ ∞

0

∫ ∞

0

∫ θ−a

0

fΓ(γ|h, r)fH(h)fR(r)dγdhdr

+

∫ ∞

0

∫ ∞

0

∫ θ+a

θ−a

(
1

2
−µ(γ−θ)√

2π
)fΓ(γ|h, r)fH(h)fR(r)dγdhdr

= I1 + I2,
(23)

where µ and a are previously defined in Sec. III, and triple
integrals in (23) are defined as

I1 =

∫ ∞

0

∫ ∞

0

∫ θ−a

0

fΓ(γ|h, r)fH(h)fR(r)dγdhdr, (24)

and

I2 =

∫ ∞

0

∫ ∞

0

∫ θ+a

θ−a

(
1

2
−µ(γ−θ)√

2π
)fΓ(γ|h, r)fH(h)fR(r)dγdhdr.

(25)

After substituting (4), (5) and (15) into (24), the first triple
integral in (24) is re-written as

I1 =

∫ ∞

0

(∫ ∞

0

(∫ θ−a

0

te−
t2γ

4hr−4

2
√
πhr−4

γ− 1
2 dγ

)
× mm

Γ(m)
hm−1e−mhdh

)
2πλbre

−λbπr
2

dr

) (26)

After solving the inner integral in (26) over γ with the help

of [24, (8.251)] as
∫ θ−a

0
te

− t2γ

4hr−4

2
√
πhr−4

γ− 1
2 dγ = ( t

√
θ−a

2
√
hr−4

), the
integral I1 is now rewritten as

I1 =
mm

Γ(m)

∫ ∞

0

(∫ ∞

0

hm−1e−mh

(
t
√
θ−a

2
√
hr−4

)
dh

)
× 2πλbre

−λbπr
2

dr.

(27)

After representing the exponential function in terms of Mei-
jer’s G-functions by using [26, (01.03.26.0004.01)] as e−mh =
G 1,0

0,1

(
mh

∣∣−
0

)
, and the error function function by using [26,

(06.25.26.0006.01) and (07.34.21.0011.01)] as erf( t
√
θ−a

2
√
hr−4

) =

1√
π
G 1,1

2,1

(
4hr−4

t2(θ−a)

∣∣∣ 1
2 ,1
0

)
, respectively, the inner integral over

h is solved with the help of [26, (07.34.21.0011.01)]. After-
wards, the error probability in (27) can be written as

I1=
2λb

√
π

Γ(m)

∫ ∞

0

re−λbπr
2

G 1,2
3,1

(
4r−4

t2(θ−a)m

∣∣∣∣ 1
2 ,1−m,1

0

)
dr. (28)

Following the exponential function presentation in terms
of Meijer’s G-functions by [26, (01.03.26.0004.01)] as
e−λbπr

2

= G 1,0
0,1

(
λbπr

2
∣∣−
0

)
and the change of variables

r2 = x, the integral I1 is finally solved with the help of [26,
(07.34.16.0002.01) and (07.34.21.0013.01)] as

I1=
λb
√
π

Γ(m)

∫ ∞

0

G 1,0
0,1

(
λbπx

∣∣−
0

)
G 2,1

1,3

(
t2(θ−a)mx2

4

∣∣∣∣ 1
1
2 ,m,0

)
dx

=
1

Γ(m)π
G 2,3

3,3

(
t2(θ−a)m

(λbπ)2

∣∣∣∣ 1,0, 12
1
2 ,m,0

)
.

(29)

Next, we will deal with the second triple integral I2 in (25),
which can be presented as a sum of three integrals as

I2 =

∫ ∞

0

∫ ∞

0

∫ θ+a

θ−a

(
1

2
−µ(γ−θ)√

2π
)fΓ(γ|h, r)fH(h)fR(r)dγdhdr

= I21 − I22 + I23,
(30)

where

I21 =

∫ ∞

0

∫ ∞

0

∫ θ+a

θ−a

1

2
fΓ(γ|h, r)fH(h)fR(r)dγdhdr, (31)

I22 =

∫ ∞

0

∫ ∞

0

∫ θ+a

θ−a

µγ√
2π

fΓ(γ|h, r)fH(h)fR(r)dγdhdr, (32)

I23 =

∫ ∞

0

∫ ∞

0

∫ θ+a

θ−a

µθ√
2π

fΓ(γ|h, r)fH(h)fR(r)dγdhdr. (33)

After substituting (4), (5) and (15) into (31), the integral I21
is re-written as

I21 =

∫ ∞

0

(∫ ∞

0

(∫ θ+a

θ−a

te−
t2γ

4hr−4

4
√
πhr−4

γ− 1
2 dγ

)
× mm

Γ(m)
hm−1e−mhdh

)
2πλbre

−λbπr
2

dr

)
,

(34)



The inner integral in (34) over γ is solved by [24, (8.251)] as∫ θ+a

θ−a
te

− t2γ

4hr−4

4
√
πhr−4

γ− 1
2 dγ = 1

2 (
t
√
θ+a

2
√
hr−4

)− 1
2 (

t
√
θ−a

2
√
hr−4

), leading to
the new form of integral I21

I21 =

∫ ∞

0

(∫ ∞

0

(
1

2
(
t
√
θ + a

2
√
hr−4

)− 1

2
(
t
√
θ − a

2
√
hr−4

)

)
× mm

Γ(m)
hm−1e−mhdh

)
2πλbre

−λbπr
2

dr

)
.

(35)

Since both integrals over h and r in (35) are similar as
the corresponding ones in (27), after following the same
steps early described (derivation from (27) to (29)), the final
expression of I21 is determined as

I21 =
1

2Γ(m)π

(
G 2,3

3,3

(
t2(θ+a)m

(λbπ)2

∣∣∣∣ 1,0, 12
1
2 ,m,0

)
−G 2,3

3,3

(
t2(θ−a)m

(λbπ)2

∣∣∣∣ 1,0, 12
1
2 ,m,0

))
.

(36)

After substituting (4), (5) and (15) into (33), integral I23 is
re-written and solved by following the same procedure as in
derivation of I21

I23 =

∫ ∞

0

(∫ ∞

0

(∫ θ+a

θ−a

µθ√
2π

te−
t2γ

4hr−4

2
√
πhr−4

γ− 1
2 dγ

)
× mm

Γ(m)
hm−1e−mhdh

)
2πλbre

−λbπr
2

dr

)
=

µθ

Γ(m)π
√
2π

(
G 2,3

3,3

(
t2(θ+a)m

(λbπ)2

∣∣∣∣ 1,0, 12
1
2 ,m,0

)
−G 2,3

3,3

(
t2(θ−a)m

(λbπ)2

∣∣∣∣ 1,0, 12
1
2 ,m,0

))
.

(37)

After substituting (4), (5) and (15) into (32), the integral
I22 is re-written as

I22 =

∫ ∞

0

(∫ ∞

0

(∫ θ+a

θ−a

µte−
t2γ

4hr−4

2π
√
2hr−4

γ
1
2 dγ

)
× mm

Γ(m)
hm−1e−mhdh

)
2πλbre

−λbπr
2

dr

)
,

(38)

The inner integral in (38) over γ is solved as

I22 =

∫ ∞

0

(∫ ∞

0

µt

2π
√
2hr−η

mm

Γ(m)
hm−1e−mhdh

)
×
(
(θ + a)

3
2E− 1

2

( t2

4hr−η
(θ + a)

)
− (θ − a)

3
2E− 1

2

( t2

4hr−η
(θ − a)

))
fR(r)dr

)
,

(39)

where Ev(z) represents exponential integral defined in [26,
(06.34.07.0001.01)]. Exponential function is represented in
terms of Meijer’s G-function by [26, (01.03.26.0004.01)]
as e−h = G 1,0

0,1

(
h
∣∣−
0

)
, while [26, (06.34.26.0005.01) and

(07.34.16.0002.01)] can be used to transform exponential
integral function into Meijer’s G-function. Integral over h

in (39) can be solved using [26, (07.34.21.0011.01) and
(07.34.16.0002.01)] as

I22 =

∫ ∞

0

µt
√
m

2
√
2πΓ(m)

r22πλbre
−λbπr

2

×
(
(θ + a)

3
2G 3,0

1,3

(
t2(θ+a)mr4

4

∣∣∣∣ − 1
2

− 3
2 ,0,m− 1

2

)
− (θ − a)

3
2G 3,0

1,3

(
t2(θ−a)mr4

4

∣∣∣∣ − 1
2

− 3
2 ,0,m− 1

2

))
dr.

(40)

Next, exponential function in (40) is represented in terms of
Meijer’s G-function by [26, (01.03.26.0004.01)] as e−λbπr

2

=
G 1,0

0,1

(
λbπr

2
∣∣−
0

)
. Integral in (40) does not converge over the

specified interval {0,∞}, thus we use series representation of
Meijer’s G-function [26, (07.34.06.0001.01)] in order to have
high precision approximation. Afterwards, integral in (40) is
easily solved as

I22 = −b1z1
(
c+ dz1

m− 1
2

)
+ b2z2

(
c+ dz2

m− 1
2

)
, (41)

After substituting (36), (37) and (41) into (30), integral I2
is approximated as

I2 =
a1

Γ(m)π
G 2,3

3,3

(
z1

∣∣∣ 1,0, 12
1
2 ,m,0

)
− a1

Γ(m)π
G 2,3

3,3

(
z2

∣∣∣ 1,0, 12
1
2 ,m,0

)
+ b1z1

(
c+ dz1

m− 1
2

)
− b2z2

(
c+ dz2

m− 1
2

)
(42)

where a1, a2, b1, b2, c, z1, z2 are defined in (17).
After substituting (29) and (42), the final approximate FBL

error probability is derived and given by (16). The deviation
from the exact values of error probability will be determined
based on the expression given in (14), which will be calculated
by numerical integration.

APPENDIX B

In order to derive the threshold-based error probability in
(20), the first step is to substitute the interference PDF fI(x)
given by (9) in (20)

Pe=1−
∫ ∞

0

(∫ ∞

0

(∫ hr−4

γth

0

te−
t2

4x

2
√
πx

3
2

dx

)
fH(h)dh

)
fR(r)dr.

(43)
The inner integral over x is solved by [24, (3.361.1)] as∫ hr−4

γth
0

te−
t2

4x

2
√
πx

3
2
dx = erfc

(
t
2

√
γth

hr−4

)
, where erfc(·) is the

complementary error function defined in [24, (8.250.4)]. After
substituting solution of the integral over x in (43), and the
replacement of the PDF of the fading power given by (4), the
error probability in (43) is rewritten as

Pe=1−
∫ ∞

0

(∫ ∞

0

erfc

(
t

2

√
γth
hr−4

)
mm

Γ(m)
hm−1e−mhdh

)
fR(r)dr.

(44)
Exponential function is represented in terms of Meijer’s

G-function [26, (01.03.26.0004.01)] as e−h = G 1,0
0,1

(
h
∣∣−
0

)
,

while [26, (06.27.26.0006.01) and (07.34.16.0002.01)]



can be used for the complementary error function as

erfc

(
t
2

√
γth

hr−4

)
= 1√

π
G 0,2

2,1

(
4r−4h
t2γth

∣∣∣ 1, 1
2

0

)
. Afterwards, the

error probability in (44) can be written as

Pe = 1− mm

√
πΓ(m)

∫ ∞

0

(∫ ∞

0

hm−1G 1,0
0,1

(
mh

∣∣−
0

)
×G 0,2

2,1

(
4r−4

t2γth
h

∣∣∣∣ 1, 1
2

0

)
dh

)
fR(r)dr.

(45)

Integral over h in (45) is solved by [26, (07.34.21.0011.01)]
as ∫ ∞

0

hm−1G 1,0
0,1

(
mh
∣∣−
0

)
G 0,2

2,1

(
4r−4h

t2γth

∣∣∣∣ 1, 1
2

0

)
dh

= m−mG 0,3
3,1

(
4r−4

t2γthm

∣∣∣∣ 1, 1
2 , 1−m
0

)
.

(46)

After substituting (46) and fR(r) given by (5) into (45), the
error probability is rewritten as

Pe = 1− 2πλb√
πΓ(m)

×
∫ ∞

0

re−λbπr
2

G 0,3
3,1

(
4r−4

t2γthm

∣∣∣∣ 1, 1
2 , 1−m
0

)
dr.

(47)

After applying the change of variables r2 = u, [26,
(07.34.16.0002.01)] is used to perform transformation of Mei-
jer’s G-function as

G 0,3
3,1

(
4u−2

t2γthm

∣∣∣∣ 1, 12 ,1−m
0

)
=G 3,0

1,3

(
t2γthm

4
u2

∣∣∣∣ 1
0, 1

2 ,m

)
, (48)

while the the exponential function is represented in terms
of Meijer’s G-function as e−λbπu = G 1,0

0,1

(
λbπu

∣∣−
0

)
based

on [26, (01.03.26.0004.01)]. Finally, the error probability
expression is re-written as

Pe = 1− πλb√
πΓ(m)

×
∫ ∞

0

G 1,0
0,1

(
λbπu

∣∣−
0

)
G 3,0

1,3

(
t2γthm

4
u2

∣∣∣∣ 1
0, 1

2 ,m

)
du.

(49)

Integral in (49) is solved with the help of [26,
(07.34.21.0013.01)], and derived final closed-form expression
for the threshold-based error probability is given in (21).

REFERENCES

[1] U. Raza, P. Kulkarni, and M. Sooriyabandara, ”Low power wide area
networks: an overview,” IEEE Commun. Surv. Tutor., vol. 19, no. 2, pp.
855-873, Secondquarter 2017.

[2] A. Laya, L. Alonso, and J. Alonso-Zarate, ”Is the random access channel
of LTE and LTE-A suitable for M2M communications? A survey of
alternatives,” IEEE Commun. Surv. Tutor., vol. 16, no. 1, pp. 4-16, First
Quarter 2014.

[3] G. Durisi, T. Koch, and P. Popovski, ”Toward massive, ultrareliable, and
low-latency wireless communication with short packets,” Proc. IEEE,
vol. 104, no. 9, pp. 1711-1726, Sept. 2016.

[4] M. Haenggi and R. K. Ganti, ”Interference in large wireless networks,”
Found. Trends Netw., vol. 3, no. 2, pp. 127-248, 2009.

[5] M. Haenggi, ”Stochastic geometry for wireless networks,” Cambridge
University Press, 2012.

[6] F. Baccelli, B. Blaszczyszyn, and P. Muhlethaler, “An Aloha protocol
for multihop mobile wireless networks,” IEEE Trans. Inf. Theory, vol.
52, no. 2, pp. 421-436, Feb. 2006.

[7] Y. Polyanskiy, V. H. Poor, and S. Verdú, ”Channel coding rate in the
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